mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			74 lines
		
	
	
		
			1.4 KiB
		
	
	
	
		
			INI
		
	
	
	
	
	
			
		
		
	
	
			74 lines
		
	
	
		
			1.4 KiB
		
	
	
	
		
			INI
		
	
	
	
	
	
[training]
 | 
						|
patience = 10000
 | 
						|
eval_frequency = 200
 | 
						|
dropout = 0.2
 | 
						|
init_tok2vec = null
 | 
						|
vectors = null
 | 
						|
max_epochs = 100
 | 
						|
orth_variant_level = 0.0
 | 
						|
gold_preproc = true
 | 
						|
max_length = 0
 | 
						|
use_gpu = 0
 | 
						|
scores = ["tags_acc", "uas", "las"]
 | 
						|
score_weights = {"las": 0.8, "tags_acc": 0.2}
 | 
						|
limit = 0
 | 
						|
seed = 0
 | 
						|
accumulate_gradient = 2
 | 
						|
discard_oversize = false
 | 
						|
 | 
						|
[training.batch_size]
 | 
						|
@schedules = "compounding.v1"
 | 
						|
start = 100
 | 
						|
stop = 1000
 | 
						|
compound = 1.001
 | 
						|
 | 
						|
[training.optimizer]
 | 
						|
@optimizers = "Adam.v1"
 | 
						|
learn_rate = 0.001
 | 
						|
beta1 = 0.9
 | 
						|
beta2 = 0.999
 | 
						|
 | 
						|
[nlp]
 | 
						|
lang = "en"
 | 
						|
vectors = ${training:vectors}
 | 
						|
 | 
						|
[nlp.pipeline.tok2vec]
 | 
						|
factory = "tok2vec"
 | 
						|
 | 
						|
[nlp.pipeline.tagger]
 | 
						|
factory = "tagger"
 | 
						|
 | 
						|
[nlp.pipeline.parser]
 | 
						|
factory = "parser"
 | 
						|
learn_tokens = false
 | 
						|
min_action_freq = 1
 | 
						|
beam_width = 1
 | 
						|
beam_update_prob = 1.0
 | 
						|
 | 
						|
[nlp.pipeline.tagger.model]
 | 
						|
@architectures = "spacy.Tagger.v1"
 | 
						|
 | 
						|
[nlp.pipeline.tagger.model.tok2vec]
 | 
						|
@architectures = "spacy.Tok2VecTensors.v1"
 | 
						|
width = ${nlp.pipeline.tok2vec.model:width}
 | 
						|
 | 
						|
[nlp.pipeline.parser.model]
 | 
						|
@architectures = "spacy.TransitionBasedParser.v1"
 | 
						|
nr_feature_tokens = 8
 | 
						|
hidden_width = 64
 | 
						|
maxout_pieces = 3
 | 
						|
 | 
						|
[nlp.pipeline.parser.model.tok2vec]
 | 
						|
@architectures = "spacy.Tok2VecTensors.v1"
 | 
						|
width = ${nlp.pipeline.tok2vec.model:width}
 | 
						|
 | 
						|
[nlp.pipeline.tok2vec.model]
 | 
						|
@architectures = "spacy.HashEmbedBiLSTM.v1"
 | 
						|
pretrained_vectors = ${nlp:vectors}
 | 
						|
width = 96
 | 
						|
depth = 4
 | 
						|
embed_size = 2000
 | 
						|
subword_features = true
 | 
						|
maxout_pieces = 3
 | 
						|
dropout = null
 |