mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-13 10:46:29 +03:00
2a5a61683e
Our JSON training format is annoying to work with, and we've wanted to retire it for some time. In the meantime, we can at least add some missing functions to make it easier to live with. This patch adds a function that generates the JSON format from a list of Doc objects, one per paragraph. This should be a convenient way to handle a lot of data conversions: whatever format you have the source information in, you can use it to setup a Doc object. This approach should offer better future-proofing as well. Hopefully, we can steadily rewrite code that is sensitive to the current data-format, so that it instead goes through this function. Then when we change the data format, we won't have such a problem.
83 lines
3.3 KiB
Python
83 lines
3.3 KiB
Python
# coding: utf-8
|
|
from __future__ import unicode_literals
|
|
|
|
from spacy.gold import biluo_tags_from_offsets, offsets_from_biluo_tags
|
|
from spacy.gold import docs_to_json
|
|
from spacy.tokens import Doc
|
|
from .util import get_doc
|
|
|
|
|
|
def test_gold_biluo_U(en_vocab):
|
|
orths_and_spaces = [('I', True), ('flew', True), ('to', True),
|
|
('London', False), ('.', True)]
|
|
doc = Doc(en_vocab, orths_and_spaces=orths_and_spaces)
|
|
entities = [(len("I flew to "), len("I flew to London"), 'LOC')]
|
|
tags = biluo_tags_from_offsets(doc, entities)
|
|
assert tags == ['O', 'O', 'O', 'U-LOC', 'O']
|
|
|
|
|
|
def test_gold_biluo_BL(en_vocab):
|
|
orths_and_spaces = [('I', True), ('flew', True), ('to', True), ('San', True),
|
|
('Francisco', False), ('.', True)]
|
|
doc = Doc(en_vocab, orths_and_spaces=orths_and_spaces)
|
|
entities = [(len("I flew to "), len("I flew to San Francisco"), 'LOC')]
|
|
tags = biluo_tags_from_offsets(doc, entities)
|
|
assert tags == ['O', 'O', 'O', 'B-LOC', 'L-LOC', 'O']
|
|
|
|
|
|
def test_gold_biluo_BIL(en_vocab):
|
|
orths_and_spaces = [('I', True), ('flew', True), ('to', True), ('San', True),
|
|
('Francisco', True), ('Valley', False), ('.', True)]
|
|
doc = Doc(en_vocab, orths_and_spaces=orths_and_spaces)
|
|
entities = [(len("I flew to "), len("I flew to San Francisco Valley"), 'LOC')]
|
|
tags = biluo_tags_from_offsets(doc, entities)
|
|
assert tags == ['O', 'O', 'O', 'B-LOC', 'I-LOC', 'L-LOC', 'O']
|
|
|
|
|
|
def test_gold_biluo_misalign(en_vocab):
|
|
orths_and_spaces = [('I', True), ('flew', True), ('to', True), ('San', True),
|
|
('Francisco', True), ('Valley.', False)]
|
|
doc = Doc(en_vocab, orths_and_spaces=orths_and_spaces)
|
|
entities = [(len("I flew to "), len("I flew to San Francisco Valley"), 'LOC')]
|
|
tags = biluo_tags_from_offsets(doc, entities)
|
|
assert tags == ['O', 'O', 'O', '-', '-', '-']
|
|
|
|
|
|
def test_roundtrip_offsets_biluo_conversion(en_tokenizer):
|
|
text = "I flew to Silicon Valley via London."
|
|
biluo_tags = ['O', 'O', 'O', 'B-LOC', 'L-LOC', 'O', 'U-GPE', 'O']
|
|
offsets = [(10, 24, 'LOC'), (29, 35, 'GPE')]
|
|
doc = en_tokenizer(text)
|
|
biluo_tags_converted = biluo_tags_from_offsets(doc, offsets)
|
|
assert biluo_tags_converted == biluo_tags
|
|
offsets_converted = offsets_from_biluo_tags(doc, biluo_tags)
|
|
assert offsets_converted == offsets
|
|
|
|
def test_docs_to_json(en_vocab):
|
|
'''Test we can convert a list of Doc objects into the JSON-serializable
|
|
format we use for training.
|
|
'''
|
|
docs = [
|
|
get_doc(
|
|
en_vocab,
|
|
words=['a', 'b'],
|
|
pos=['VBP', 'NN'],
|
|
heads=[0, -1],
|
|
deps=['ROOT', 'dobj'],
|
|
ents=[]),
|
|
get_doc(
|
|
en_vocab,
|
|
words=['c', 'd', 'e'],
|
|
pos=['VBP', 'NN', 'NN'],
|
|
heads=[0, -1, -2],
|
|
deps=['ROOT', 'dobj', 'dobj'],
|
|
ents=[(1, 2, 'ORG')]),
|
|
]
|
|
json_doc = docs_to_json(0, docs)
|
|
assert json_doc['id'] == 0
|
|
assert len(json_doc['paragraphs']) == 2
|
|
assert len(json_doc['paragraphs'][0]['sentences']) == 1
|
|
assert len(json_doc['paragraphs'][1]['sentences']) == 1
|
|
assert len(json_doc['paragraphs'][0]['sentences'][0]['tokens']) == 2
|
|
assert len(json_doc['paragraphs'][1]['sentences'][0]['tokens']) == 3
|