mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-01 04:46:38 +03:00
045cd43c3f
* fix typos * prettier formatting --------- Co-authored-by: svlandeg <svlandeg@github.com>
456 lines
21 KiB
Plaintext
456 lines
21 KiB
Plaintext
---
|
||
title: What's New in v2.2
|
||
teaser: New features, backwards incompatibilities and migration guide
|
||
menu:
|
||
- ['New Features', 'features']
|
||
- ['Backwards Incompatibilities', 'incompat']
|
||
- ['Migrating from v2.1', 'migrating']
|
||
---
|
||
|
||
## New Features {id="features",hidden="true"}
|
||
|
||
spaCy v2.2 features improved statistical models, new pretrained models for
|
||
Norwegian and Lithuanian, better Dutch NER, as well as a new mechanism for
|
||
storing language data that makes the installation about **5-10× smaller**
|
||
on disk. We've also added a new class to efficiently **serialize annotations**,
|
||
an improved and **10× faster** phrase matching engine, built-in scoring
|
||
and **CLI training for text classification**, a new command to analyze and
|
||
**debug training data**, data augmentation during training and more. For the
|
||
full changelog, see the
|
||
[release notes on GitHub](https://github.com/explosion/spaCy/releases/tag/v2.2.0).
|
||
|
||
For more details and a behind-the-scenes look at the new release,
|
||
[see our blog post](https://explosion.ai/blog/spacy-v2-2).
|
||
|
||
### Better pretrained models and more languages {id="models"}
|
||
|
||
> #### Example
|
||
>
|
||
> ```bash
|
||
> python -m spacy download nl_core_news_sm
|
||
> python -m spacy download nb_core_news_sm
|
||
> python -m spacy download lt_core_news_sm
|
||
> ```
|
||
|
||
The new version also features new and re-trained models for all languages and
|
||
resolves a number of data bugs. The [Dutch model](/models/nl) has been retrained
|
||
with a new and custom-labelled NER corpus using the same extended label scheme
|
||
as the English models. It should now produce significantly better NER results
|
||
overall. We've also added new core models for [Norwegian](/models/nb) (MIT) and
|
||
[Lithuanian](/models/lt) (CC BY-SA).
|
||
|
||
<Infobox>
|
||
|
||
**Usage:** [Models directory](/models) **Benchmarks: **
|
||
[Release notes](https://github.com/explosion/spaCy/releases/tag/v2.2.0)
|
||
|
||
</Infobox>
|
||
|
||
### Text classification scores and CLI training {id="train-textcat-cli"}
|
||
|
||
> #### Example
|
||
>
|
||
> ```bash
|
||
> $ python -m spacy train en /output /train /dev \\
|
||
> --pipeline textcat --textcat-arch simple_cnn \\
|
||
> --textcat-multilabel
|
||
> ```
|
||
|
||
When training your models using the `spacy train` command, you can now also
|
||
include text categories in the JSON-formatted training data. The `Scorer` and
|
||
`nlp.evaluate` now report the text classification scores, calculated as the
|
||
F-score on positive label for binary exclusive tasks, the macro-averaged F-score
|
||
for 3+ exclusive labels or the macro-averaged AUC ROC score for multilabel
|
||
classification.
|
||
|
||
<Infobox>
|
||
|
||
**API:** [`spacy train`](/api/cli#train), [`Scorer`](/api/scorer),
|
||
[`Language.evaluate`](/api/language#evaluate)
|
||
|
||
</Infobox>
|
||
|
||
### New DocBin class to efficiently serialize Doc collections
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> from spacy.tokens import DocBin
|
||
> doc_bin = DocBin(attrs=["LEMMA", "ENT_IOB", "ENT_TYPE"], store_user_data=True)
|
||
> for doc in nlp.pipe(texts):
|
||
> doc_bin.add(doc)
|
||
> bytes_data = doc_bin.to_bytes()
|
||
> # Deserialize later, e.g. in a new process
|
||
> nlp = spacy.blank("en")
|
||
> doc_bin = DocBin().from_bytes(bytes_data)
|
||
> docs = list(doc_bin.get_docs(nlp.vocab))
|
||
> ```
|
||
|
||
If you're working with lots of data, you'll probably need to pass analyses
|
||
between machines, either to use something like [Dask](https://dask.org) or
|
||
[Spark](https://spark.apache.org), or even just to save out work to disk. Often
|
||
it's sufficient to use the `Doc.to_array` functionality for this, and just
|
||
serialize the numpy arrays – but other times you want a more general way to save
|
||
and restore `Doc` objects.
|
||
|
||
The new `DocBin` class makes it easy to serialize and deserialize a collection
|
||
of `Doc` objects together, and is much more efficient than calling
|
||
`Doc.to_bytes` on each individual `Doc` object. You can also control what data
|
||
gets saved, and you can merge pallets together for easy map/reduce-style
|
||
processing.
|
||
|
||
<Infobox>
|
||
|
||
**API:** [`DocBin`](/api/docbin) **Usage: **
|
||
[Serializing Doc objects](/usage/saving-loading#docs)
|
||
|
||
</Infobox>
|
||
|
||
### Serializable lookup tables and smaller installation {id="lookups"}
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> data = {"foo": "bar"}
|
||
> nlp.vocab.lookups.add_table("my_dict", data)
|
||
>
|
||
> def custom_component(doc):
|
||
> table = doc.vocab.lookups.get_table("my_dict")
|
||
> print(table.get("foo")) # look something up
|
||
> return doc
|
||
> ```
|
||
|
||
The new `Lookups` API lets you add large dictionaries and lookup tables to the
|
||
`Vocab` and access them from the tokenizer or custom components and extension
|
||
attributes. Internally, the tables use Bloom filters for efficient lookup
|
||
checks. They're also fully serializable out-of-the-box. All large data resources
|
||
like lemmatization tables have been moved to a separate package,
|
||
[`spacy-lookups-data`](https://github.com/explosion/spacy-lookups-data) that can
|
||
be installed alongside the core library. This allowed us to make the spaCy
|
||
installation **5-10× smaller on disk** (depending on your platform).
|
||
[Pretrained models](/models) now include their data files, so you only need to
|
||
install the lookups if you want to build blank models or use lemmatization with
|
||
languages that don't yet ship with pretrained models.
|
||
|
||
<Infobox>
|
||
|
||
**API:** [`Lookups`](/api/lookups),
|
||
[`spacy-lookups-data`](https://github.com/explosion/spacy-lookups-data) **Usage:
|
||
** [Adding languages: Lemmatizer](/usage/adding-languages#lemmatizer)
|
||
|
||
</Infobox>
|
||
|
||
### CLI command to debug and validate training data {id="debug-data"}
|
||
|
||
> #### Example
|
||
>
|
||
> ```bash
|
||
> $ python -m spacy debug-data en train.json dev.json
|
||
> ```
|
||
|
||
The new `debug-data` command lets you analyze and validate your training and
|
||
development data, get useful stats, and find problems like invalid entity
|
||
annotations, cyclic dependencies, low data labels and more. If you're training a
|
||
model with `spacy train` and the results seem surprising or confusing,
|
||
`debug-data` may help you track down the problems and improve your training
|
||
data.
|
||
|
||
<Accordion title="Example output">
|
||
|
||
```
|
||
=========================== Data format validation ===========================
|
||
✔ Corpus is loadable
|
||
|
||
=============================== Training stats ===============================
|
||
Training pipeline: tagger, parser, ner
|
||
Starting with blank model 'en'
|
||
18127 training docs
|
||
2939 evaluation docs
|
||
⚠ 34 training examples also in evaluation data
|
||
|
||
============================== Vocab & Vectors ==============================
|
||
ℹ 2083156 total words in the data (56962 unique)
|
||
⚠ 13020 misaligned tokens in the training data
|
||
⚠ 2423 misaligned tokens in the dev data
|
||
10 most common words: 'the' (98429), ',' (91756), '.' (87073), 'to' (50058),
|
||
'of' (49559), 'and' (44416), 'a' (34010), 'in' (31424), 'that' (22792), 'is'
|
||
(18952)
|
||
ℹ No word vectors present in the model
|
||
|
||
========================== Named Entity Recognition ==========================
|
||
ℹ 18 new labels, 0 existing labels
|
||
528978 missing values (tokens with '-' label)
|
||
New: 'ORG' (23860), 'PERSON' (21395), 'GPE' (21193), 'DATE' (18080), 'CARDINAL'
|
||
(10490), 'NORP' (9033), 'MONEY' (5164), 'PERCENT' (3761), 'ORDINAL' (2122),
|
||
'LOC' (2113), 'TIME' (1616), 'WORK_OF_ART' (1229), 'QUANTITY' (1150), 'FAC'
|
||
(1134), 'EVENT' (974), 'PRODUCT' (935), 'LAW' (444), 'LANGUAGE' (338)
|
||
✔ Good amount of examples for all labels
|
||
✔ Examples without occurrences available for all labels
|
||
✔ No entities consisting of or starting/ending with whitespace
|
||
|
||
=========================== Part-of-speech Tagging ===========================
|
||
ℹ 49 labels in data (57 labels in tag map)
|
||
'NN' (266331), 'IN' (227365), 'DT' (185600), 'NNP' (164404), 'JJ' (119830),
|
||
'NNS' (110957), '.' (101482), ',' (92476), 'RB' (90090), 'PRP' (90081), 'VB'
|
||
(74538), 'VBD' (68199), 'CC' (62862), 'VBZ' (50712), 'VBP' (43420), 'VBN'
|
||
(42193), 'CD' (40326), 'VBG' (34764), 'TO' (31085), 'MD' (25863), 'PRP$'
|
||
(23335), 'HYPH' (13833), 'POS' (13427), 'UH' (13322), 'WP' (10423), 'WDT'
|
||
(9850), 'RP' (8230), 'WRB' (8201), ':' (8168), '''' (7392), '``' (6984), 'NNPS'
|
||
(5817), 'JJR' (5689), '$' (3710), 'EX' (3465), 'JJS' (3118), 'RBR' (2872),
|
||
'-RRB-' (2825), '-LRB-' (2788), 'PDT' (2078), 'XX' (1316), 'RBS' (1142), 'FW'
|
||
(794), 'NFP' (557), 'SYM' (440), 'WP$' (294), 'LS' (293), 'ADD' (191), 'AFX'
|
||
(24)
|
||
✔ All labels present in tag map for language 'en'
|
||
|
||
============================= Dependency Parsing =============================
|
||
ℹ Found 111703 sentences with an average length of 18.6 words.
|
||
ℹ Found 2251 nonprojective train sentences
|
||
ℹ Found 303 nonprojective dev sentences
|
||
ℹ 47 labels in train data
|
||
ℹ 211 labels in projectivized train data
|
||
'punct' (236796), 'prep' (188853), 'pobj' (182533), 'det' (172674), 'nsubj'
|
||
(169481), 'compound' (116142), 'ROOT' (111697), 'amod' (107945), 'dobj' (93540),
|
||
'aux' (86802), 'advmod' (86197), 'cc' (62679), 'conj' (59575), 'poss' (36449),
|
||
'ccomp' (36343), 'advcl' (29017), 'mark' (27990), 'nummod' (24582), 'relcl'
|
||
(21359), 'xcomp' (21081), 'attr' (18347), 'npadvmod' (17740), 'acomp' (17204),
|
||
'auxpass' (15639), 'appos' (15368), 'neg' (15266), 'nsubjpass' (13922), 'case'
|
||
(13408), 'acl' (12574), 'pcomp' (10340), 'nmod' (9736), 'intj' (9285), 'prt'
|
||
(8196), 'quantmod' (7403), 'dep' (4300), 'dative' (4091), 'agent' (3908), 'expl'
|
||
(3456), 'parataxis' (3099), 'oprd' (2326), 'predet' (1946), 'csubj' (1494),
|
||
'subtok' (1147), 'preconj' (692), 'meta' (469), 'csubjpass' (64), 'iobj' (1)
|
||
⚠ Low number of examples for label 'iobj' (1)
|
||
⚠ Low number of examples for 130 labels in the projectivized dependency
|
||
trees used for training. You may want to projectivize labels such as punct
|
||
before training in order to improve parser performance.
|
||
⚠ Projectivized labels with low numbers of examples: appos||attr: 12
|
||
advmod||dobj: 13 prep||ccomp: 12 nsubjpass||ccomp: 15 pcomp||prep: 14
|
||
amod||dobj: 9 attr||xcomp: 14 nmod||nsubj: 17 prep||advcl: 2 prep||prep: 5
|
||
nsubj||conj: 12 advcl||advmod: 18 ccomp||advmod: 11 ccomp||pcomp: 5 acl||pobj:
|
||
10 npadvmod||acomp: 7 dobj||pcomp: 14 nsubjpass||pcomp: 1 nmod||pobj: 8
|
||
amod||attr: 6 nmod||dobj: 12 aux||conj: 1 neg||conj: 1 dative||xcomp: 11
|
||
pobj||dative: 3 xcomp||acomp: 19 advcl||pobj: 2 nsubj||advcl: 2 csubj||ccomp: 1
|
||
advcl||acl: 1 relcl||nmod: 2 dobj||advcl: 10 advmod||advcl: 3 nmod||nsubjpass: 6
|
||
amod||pobj: 5 cc||neg: 1 attr||ccomp: 16 advcl||xcomp: 3 nmod||attr: 4
|
||
advcl||nsubjpass: 5 advcl||ccomp: 4 ccomp||conj: 1 punct||acl: 1 meta||acl: 1
|
||
parataxis||acl: 1 prep||acl: 1 amod||nsubj: 7 ccomp||ccomp: 3 acomp||xcomp: 5
|
||
dobj||acl: 5 prep||oprd: 6 advmod||acl: 2 dative||advcl: 1 pobj||agent: 5
|
||
xcomp||amod: 1 dep||advcl: 1 prep||amod: 8 relcl||compound: 1 advcl||csubj: 3
|
||
npadvmod||conj: 2 npadvmod||xcomp: 4 advmod||nsubj: 3 ccomp||amod: 7
|
||
advcl||conj: 1 nmod||conj: 2 advmod||nsubjpass: 2 dep||xcomp: 2 appos||ccomp: 1
|
||
advmod||dep: 1 advmod||advmod: 5 aux||xcomp: 8 dep||advmod: 1 dative||ccomp: 2
|
||
prep||dep: 1 conj||conj: 1 dep||ccomp: 4 cc||ROOT: 1 prep||ROOT: 1 nsubj||pcomp:
|
||
3 advmod||prep: 2 relcl||dative: 1 acl||conj: 1 advcl||attr: 4 prep||npadvmod: 1
|
||
nsubjpass||xcomp: 1 neg||advmod: 1 xcomp||oprd: 1 advcl||advcl: 1 dobj||dep: 3
|
||
nsubjpass||parataxis: 1 attr||pcomp: 1 ccomp||parataxis: 1 advmod||attr: 1
|
||
nmod||oprd: 1 appos||nmod: 2 advmod||relcl: 1 appos||npadvmod: 1 appos||conj: 1
|
||
prep||expl: 1 nsubjpass||conj: 1 punct||pobj: 1 cc||pobj: 1 conj||pobj: 1
|
||
punct||conj: 1 ccomp||dep: 1 oprd||xcomp: 3 ccomp||xcomp: 1 ccomp||nsubj: 1
|
||
nmod||dep: 1 xcomp||ccomp: 1 acomp||advcl: 1 intj||advmod: 1 advmod||acomp: 2
|
||
relcl||oprd: 1 advmod||prt: 1 advmod||pobj: 1 appos||nummod: 1 relcl||npadvmod:
|
||
3 mark||advcl: 1 aux||ccomp: 1 amod||nsubjpass: 1 npadvmod||advmod: 1 conj||dep:
|
||
1 nummod||pobj: 1 amod||npadvmod: 1 intj||pobj: 1 nummod||npadvmod: 1
|
||
xcomp||xcomp: 1 aux||dep: 1 advcl||relcl: 1
|
||
⚠ The following labels were found only in the train data: xcomp||amod,
|
||
advcl||relcl, prep||nsubjpass, acl||nsubj, nsubjpass||conj, xcomp||oprd,
|
||
advmod||conj, advmod||advmod, iobj, advmod||nsubjpass, dobj||conj, ccomp||amod,
|
||
meta||acl, xcomp||xcomp, prep||attr, prep||ccomp, advcl||acomp, acl||dobj,
|
||
advcl||advcl, pobj||agent, prep||advcl, nsubjpass||xcomp, prep||dep,
|
||
acomp||xcomp, aux||ccomp, ccomp||dep, conj||dep, relcl||compound,
|
||
nsubjpass||ccomp, nmod||dobj, advmod||advcl, advmod||acl, dobj||advcl,
|
||
dative||xcomp, prep||nsubj, ccomp||ccomp, nsubj||ccomp, xcomp||acomp,
|
||
prep||acomp, dep||advmod, acl||pobj, appos||dobj, npadvmod||acomp, cc||ROOT,
|
||
relcl||nsubj, nmod||pobj, acl||nsubjpass, ccomp||advmod, pcomp||prep,
|
||
amod||dobj, advmod||attr, advcl||csubj, appos||attr, dobj||pcomp, prep||ROOT,
|
||
relcl||pobj, advmod||pobj, amod||nsubj, ccomp||xcomp, prep||oprd,
|
||
npadvmod||advmod, appos||nummod, advcl||pobj, neg||advmod, acl||attr,
|
||
appos||nsubjpass, csubj||ccomp, amod||nsubjpass, intj||pobj, dep||advcl,
|
||
cc||neg, xcomp||ccomp, dative||ccomp, nmod||oprd, pobj||dative, prep||dobj,
|
||
dep||ccomp, relcl||attr, ccomp||nsubj, advcl||xcomp, nmod||dep, advcl||advmod,
|
||
ccomp||conj, pobj||prep, advmod||acomp, advmod||relcl, attr||pcomp,
|
||
ccomp||parataxis, oprd||xcomp, intj||advmod, nmod||nsubjpass, prep||npadvmod,
|
||
parataxis||acl, prep||pobj, advcl||dobj, amod||pobj, prep||acl, conj||pobj,
|
||
advmod||dep, punct||pobj, ccomp||acomp, acomp||advcl, nummod||npadvmod,
|
||
dobj||dep, npadvmod||xcomp, advcl||conj, relcl||npadvmod, punct||acl,
|
||
relcl||dobj, dobj||xcomp, nsubjpass||parataxis, dative||advcl, relcl||nmod,
|
||
advcl||ccomp, appos||npadvmod, ccomp||pcomp, prep||amod, mark||advcl,
|
||
prep||advmod, prep||xcomp, appos||nsubj, attr||ccomp, advmod||prt, dobj||ccomp,
|
||
aux||conj, advcl||nsubj, conj||conj, advmod||ccomp, advcl||nsubjpass,
|
||
attr||xcomp, nmod||conj, npadvmod||conj, relcl||dative, prep||expl,
|
||
nsubjpass||pcomp, advmod||xcomp, advmod||dobj, appos||pobj, nsubj||conj,
|
||
relcl||nsubjpass, advcl||attr, appos||ccomp, advmod||prep, prep||conj,
|
||
nmod||attr, punct||conj, neg||conj, dep||xcomp, aux||xcomp, dobj||acl,
|
||
nummod||pobj, amod||npadvmod, nsubj||pcomp, advcl||acl, appos||nmod,
|
||
relcl||oprd, prep||prep, cc||pobj, nmod||nsubj, amod||attr, aux||dep,
|
||
appos||conj, advmod||nsubj, nsubj||advcl, acl||conj
|
||
To train a parser, your data should include at least 20 instances of each label.
|
||
⚠ Multiple root labels (ROOT, nsubj, aux, npadvmod, prep) found in
|
||
training data. spaCy's parser uses a single root label ROOT so this distinction
|
||
will not be available.
|
||
|
||
================================== Summary ==================================
|
||
✔ 5 checks passed
|
||
⚠ 8 warnings
|
||
```
|
||
|
||
</Accordion>
|
||
|
||
<Infobox>
|
||
|
||
**API:** [`spacy debug-data`](/api/cli#debug-data)
|
||
|
||
</Infobox>
|
||
|
||
## Backwards incompatibilities {id="incompat"}
|
||
|
||
<Infobox title="Important note on models" variant="warning">
|
||
|
||
If you've been training **your own models**, you'll need to **retrain** them
|
||
with the new version. Also don't forget to upgrade all models to the latest
|
||
versions. Models for v2.0 or v2.1 aren't compatible with models for v2.2. To
|
||
check if all of your models are up to date, you can run the
|
||
[`spacy validate`](/api/cli#validate) command.
|
||
|
||
</Infobox>
|
||
|
||
> #### Install with lookups data
|
||
>
|
||
> ```bash
|
||
> $ pip install spacy[lookups]
|
||
> ```
|
||
>
|
||
> You can also install
|
||
> [`spacy-lookups-data`](https://github.com/explosion/spacy-lookups-data)
|
||
> directly.
|
||
|
||
- The lemmatization tables have been moved to their own package,
|
||
[`spacy-lookups-data`](https://github.com/explosion/spacy-lookups-data), which
|
||
is not installed by default. If you're using pretrained models, **nothing
|
||
changes**, because the tables are now included in the model packages. If you
|
||
want to use the lemmatizer for other languages that don't yet have pretrained
|
||
models (e.g. Turkish or Croatian) or start off with a blank model that
|
||
contains lookup data (e.g. `spacy.blank("en")`), you'll need to **explicitly
|
||
install spaCy plus data** via `pip install spacy[lookups]`.
|
||
- Lemmatization tables (rules, exceptions, index and lookups) are now part of
|
||
the `Vocab` and serialized with it. This means that serialized objects (`nlp`,
|
||
pipeline components, vocab) will now include additional data, and models
|
||
written to disk will include additional files.
|
||
- The [`Lemmatizer`](/api/lemmatizer) class is now initialized with an instance
|
||
of [`Lookups`](/api/lookups) containing the rules and tables, instead of dicts
|
||
as separate arguments. This makes it easier to share data tables and modify
|
||
them at runtime. This is mostly internals, but if you've been implementing a
|
||
custom `Lemmatizer`, you'll need to update your code.
|
||
- The [Dutch model](/models/nl) has been trained on a new NER corpus (custom
|
||
labelled UD instead of WikiNER), so their predictions may be very different
|
||
compared to the previous version. The results should be significantly better
|
||
and more generalizable, though.
|
||
- The [`spacy download`](/api/cli#download) command does **not** set the
|
||
`--no-deps` pip argument anymore by default, meaning that model package
|
||
dependencies (if available) will now be also downloaded and installed. If
|
||
spaCy (which is also a model dependency) is not installed in the current
|
||
environment, e.g. if a user has built from source, `--no-deps` is added back
|
||
automatically to prevent spaCy from being downloaded and installed again from
|
||
pip.
|
||
- The built-in
|
||
[`biluo_tags_from_offsets`](/api/top-level#biluo_tags_from_offsets) converter
|
||
is now stricter and will raise an error if entities are overlapping (instead
|
||
of silently skipping them). If your data contains invalid entity annotations,
|
||
make sure to clean it and resolve conflicts. You can now also use the new
|
||
`debug-data` command to find problems in your data.
|
||
- Pipeline components can now overwrite IOB tags of tokens that are not yet part
|
||
of an entity. Once a token has an `ent_iob` value set, it won't be reset to an
|
||
"unset" state and will always have at least `O` assigned. `list(doc.ents)` now
|
||
actually keeps the annotations on the token level consistent, instead of
|
||
resetting `O` to an empty string.
|
||
- The default punctuation in the [`Sentencizer`](/api/sentencizer) has been
|
||
extended and now includes more characters common in various languages. This
|
||
also means that the results it produces may change, depending on your text. If
|
||
you want the previous behavior with limited characters, set
|
||
`punct_chars=[".", "!", "?"]` on initialization.
|
||
- The [`PhraseMatcher`](/api/phrasematcher) algorithm was rewritten from scratch
|
||
and it's now 10× faster. The rewrite also resolved a few subtle bugs
|
||
with very large terminology lists. So if you were matching large lists, you
|
||
may see slightly different results – however, the results should now be fully
|
||
correct. See [this PR](https://github.com/explosion/spaCy/pull/4309) for more
|
||
details.
|
||
- The `Serbian` language class (introduced in v2.1.8) incorrectly used the
|
||
language code `rs` instead of `sr`. This has now been fixed, so `Serbian` is
|
||
now available via `spacy.lang.sr`.
|
||
- The `"sources"` in the `meta.json` have changed from a list of strings to a
|
||
list of dicts. This is mostly internals, but if your code used
|
||
`nlp.meta["sources"]`, you might have to update it.
|
||
|
||
### Migrating from spaCy 2.1 {id="migrating"}
|
||
|
||
#### Lemmatization data and lookup tables
|
||
|
||
If you application needs lemmatization for [languages](/usage/models#languages)
|
||
with only tokenizers, you now need to install that data explicitly via
|
||
`pip install spacy[lookups]` or `pip install spacy-lookups-data`. No additional
|
||
setup is required – the package just needs to be installed in the same
|
||
environment as spaCy.
|
||
|
||
```python {highlight="3-4"}
|
||
nlp = Turkish()
|
||
doc = nlp("Bu bir cümledir.")
|
||
# 🚨 This now requires the lookups data to be installed explicitly
|
||
print([token.lemma_ for token in doc])
|
||
```
|
||
|
||
The same applies to blank models that you want to update and train – for
|
||
instance, you might use [`spacy.blank`](/api/top-level#spacy.blank) to create a
|
||
blank English model and then train your own part-of-speech tagger on top. If you
|
||
don't explicitly install the lookups data, that `nlp` object won't have any
|
||
lemmatization rules available. spaCy will now show you a warning when you train
|
||
a new part-of-speech tagger and the vocab has no lookups available.
|
||
|
||
#### Lemmatizer initialization
|
||
|
||
This is mainly internals and should hopefully not affect your code. But if
|
||
you've been creating custom [`Lemmatizers`](/api/lemmatizer), you'll need to
|
||
update how they're initialized and pass in an instance of
|
||
[`Lookups`](/api/lookups) with the (optional) tables `lemma_index`, `lemma_exc`,
|
||
`lemma_rules` and `lemma_lookup`.
|
||
|
||
```diff
|
||
from spacy.lemmatizer import Lemmatizer
|
||
+ from spacy.lookups import Lookups
|
||
|
||
lemma_index = {"verb": ("cope", "cop")}
|
||
lemma_exc = {"verb": {"coping": ("cope",)}}
|
||
lemma_rules = {"verb": [["ing", ""]]}
|
||
- lemmatizer = Lemmatizer(lemma_index, lemma_exc, lemma_rules)
|
||
+ lookups = Lookups()
|
||
+ lookups.add_table("lemma_index", lemma_index)
|
||
+ lookups.add_table("lemma_exc", lemma_exc)
|
||
+ lookups.add_table("lemma_rules", lemma_rules)
|
||
+ lemmatizer = Lemmatizer(lookups)
|
||
```
|
||
|
||
#### Converting entity offsets to BILUO tags
|
||
|
||
If you've been using the
|
||
[`biluo_tags_from_offsets`](/api/top-level#biluo_tags_from_offsets) helper to
|
||
convert character offsets into token-based BILUO tags, you may now see an error
|
||
if the offsets contain overlapping tokens and make it impossible to create a
|
||
valid BILUO sequence. This is helpful, because it lets you spot potential
|
||
problems in your data that can lead to inconsistent results later on. But it
|
||
also means that you need to adjust and clean up the offsets before converting
|
||
them:
|
||
|
||
```diff
|
||
doc = nlp("I live in Berlin Kreuzberg")
|
||
- entities = [(10, 26, "LOC"), (10, 16, "GPE"), (17, 26, "LOC")]
|
||
+ entities = [(10, 16, "GPE"), (17, 26, "LOC")]
|
||
tags = get_biluo_tags_from_offsets(doc, entities)
|
||
```
|
||
|
||
#### Serbian language data
|
||
|
||
If you've been working with `Serbian` (introduced in v2.1.8), you'll need to
|
||
change the language code from `rs` to the correct `sr`:
|
||
|
||
```diff
|
||
- from spacy.lang.rs import Serbian
|
||
+ from spacy.lang.sr import Serbian
|
||
```
|