mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-15 03:56:23 +03:00
599 lines
22 KiB
Python
599 lines
22 KiB
Python
# coding: utf8
|
|
from __future__ import unicode_literals, print_function
|
|
|
|
from pathlib import Path
|
|
from collections import Counter
|
|
import plac
|
|
import sys
|
|
import srsly
|
|
from wasabi import Printer, MESSAGES
|
|
|
|
from ..gold import GoldCorpus
|
|
from ..syntax import nonproj
|
|
from ..util import load_model, get_lang_class
|
|
|
|
|
|
# Minimum number of expected occurrences of NER label in data to train new label
|
|
NEW_LABEL_THRESHOLD = 50
|
|
# Minimum number of expected occurrences of dependency labels
|
|
DEP_LABEL_THRESHOLD = 20
|
|
# Minimum number of expected examples to train a blank model
|
|
BLANK_MODEL_MIN_THRESHOLD = 100
|
|
BLANK_MODEL_THRESHOLD = 2000
|
|
|
|
|
|
@plac.annotations(
|
|
lang=("model language", "positional", None, str),
|
|
train_path=("location of JSON-formatted training data", "positional", None, Path),
|
|
dev_path=("location of JSON-formatted development data", "positional", None, Path),
|
|
base_model=("name of model to update (optional)", "option", "b", str),
|
|
pipeline=(
|
|
"Comma-separated names of pipeline components to train",
|
|
"option",
|
|
"p",
|
|
str,
|
|
),
|
|
ignore_warnings=("Ignore warnings, only show stats and errors", "flag", "IW", bool),
|
|
verbose=("Print additional information and explanations", "flag", "V", bool),
|
|
no_format=("Don't pretty-print the results", "flag", "NF", bool),
|
|
)
|
|
def debug_data(
|
|
lang,
|
|
train_path,
|
|
dev_path,
|
|
base_model=None,
|
|
pipeline="tagger,parser,ner",
|
|
ignore_warnings=False,
|
|
verbose=False,
|
|
no_format=False,
|
|
):
|
|
"""
|
|
Analyze, debug and validate your training and development data, get useful
|
|
stats, and find problems like invalid entity annotations, cyclic
|
|
dependencies, low data labels and more.
|
|
"""
|
|
msg = Printer(pretty=not no_format, ignore_warnings=ignore_warnings)
|
|
|
|
# Make sure all files and paths exists if they are needed
|
|
if not train_path.exists():
|
|
msg.fail("Training data not found", train_path, exits=1)
|
|
if not dev_path.exists():
|
|
msg.fail("Development data not found", dev_path, exits=1)
|
|
|
|
# Initialize the model and pipeline
|
|
pipeline = [p.strip() for p in pipeline.split(",")]
|
|
if base_model:
|
|
nlp = load_model(base_model)
|
|
else:
|
|
lang_cls = get_lang_class(lang)
|
|
nlp = lang_cls()
|
|
|
|
msg.divider("Data format validation")
|
|
|
|
# TODO: Validate data format using the JSON schema
|
|
# TODO: update once the new format is ready
|
|
# TODO: move validation to GoldCorpus in order to be able to load from dir
|
|
|
|
# Create the gold corpus to be able to better analyze data
|
|
loading_train_error_message = ""
|
|
loading_dev_error_message = ""
|
|
with msg.loading("Loading corpus..."):
|
|
corpus = GoldCorpus(train_path, dev_path)
|
|
try:
|
|
train_docs = list(corpus.train_docs(nlp))
|
|
train_docs_unpreprocessed = list(
|
|
corpus.train_docs_without_preprocessing(nlp)
|
|
)
|
|
except ValueError as e:
|
|
loading_train_error_message = "Training data cannot be loaded: {}".format(
|
|
str(e)
|
|
)
|
|
try:
|
|
dev_docs = list(corpus.dev_docs(nlp))
|
|
except ValueError as e:
|
|
loading_dev_error_message = "Development data cannot be loaded: {}".format(
|
|
str(e)
|
|
)
|
|
if loading_train_error_message or loading_dev_error_message:
|
|
if loading_train_error_message:
|
|
msg.fail(loading_train_error_message)
|
|
if loading_dev_error_message:
|
|
msg.fail(loading_dev_error_message)
|
|
sys.exit(1)
|
|
msg.good("Corpus is loadable")
|
|
|
|
# Create all gold data here to avoid iterating over the train_docs constantly
|
|
gold_train_data = _compile_gold(train_docs, pipeline)
|
|
gold_train_unpreprocessed_data = _compile_gold(train_docs_unpreprocessed, pipeline)
|
|
gold_dev_data = _compile_gold(dev_docs, pipeline)
|
|
|
|
train_texts = gold_train_data["texts"]
|
|
dev_texts = gold_dev_data["texts"]
|
|
|
|
msg.divider("Training stats")
|
|
msg.text("Training pipeline: {}".format(", ".join(pipeline)))
|
|
for pipe in [p for p in pipeline if p not in nlp.factories]:
|
|
msg.fail("Pipeline component '{}' not available in factories".format(pipe))
|
|
if base_model:
|
|
msg.text("Starting with base model '{}'".format(base_model))
|
|
else:
|
|
msg.text("Starting with blank model '{}'".format(lang))
|
|
msg.text("{} training docs".format(len(train_docs)))
|
|
msg.text("{} evaluation docs".format(len(dev_docs)))
|
|
|
|
overlap = len(train_texts.intersection(dev_texts))
|
|
if overlap:
|
|
msg.warn("{} training examples also in evaluation data".format(overlap))
|
|
else:
|
|
msg.good("No overlap between training and evaluation data")
|
|
if not base_model and len(train_docs) < BLANK_MODEL_THRESHOLD:
|
|
text = "Low number of examples to train from a blank model ({})".format(
|
|
len(train_docs)
|
|
)
|
|
if len(train_docs) < BLANK_MODEL_MIN_THRESHOLD:
|
|
msg.fail(text)
|
|
else:
|
|
msg.warn(text)
|
|
msg.text(
|
|
"It's recommended to use at least {} examples (minimum {})".format(
|
|
BLANK_MODEL_THRESHOLD, BLANK_MODEL_MIN_THRESHOLD
|
|
),
|
|
show=verbose,
|
|
)
|
|
|
|
msg.divider("Vocab & Vectors")
|
|
n_words = gold_train_data["n_words"]
|
|
msg.info(
|
|
"{} total {} in the data ({} unique)".format(
|
|
n_words, "word" if n_words == 1 else "words", len(gold_train_data["words"])
|
|
)
|
|
)
|
|
if gold_train_data["n_misaligned_words"] > 0:
|
|
msg.warn(
|
|
"{} misaligned tokens in the training data".format(
|
|
gold_train_data["n_misaligned_words"]
|
|
)
|
|
)
|
|
if gold_dev_data["n_misaligned_words"] > 0:
|
|
msg.warn(
|
|
"{} misaligned tokens in the dev data".format(
|
|
gold_dev_data["n_misaligned_words"]
|
|
)
|
|
)
|
|
most_common_words = gold_train_data["words"].most_common(10)
|
|
msg.text(
|
|
"10 most common words: {}".format(
|
|
_format_labels(most_common_words, counts=True)
|
|
),
|
|
show=verbose,
|
|
)
|
|
if len(nlp.vocab.vectors):
|
|
msg.info(
|
|
"{} vectors ({} unique keys, {} dimensions)".format(
|
|
len(nlp.vocab.vectors),
|
|
nlp.vocab.vectors.n_keys,
|
|
nlp.vocab.vectors_length,
|
|
)
|
|
)
|
|
else:
|
|
msg.info("No word vectors present in the model")
|
|
|
|
if "ner" in pipeline:
|
|
# Get all unique NER labels present in the data
|
|
labels = set(
|
|
label for label in gold_train_data["ner"] if label not in ("O", "-")
|
|
)
|
|
label_counts = gold_train_data["ner"]
|
|
model_labels = _get_labels_from_model(nlp, "ner")
|
|
new_labels = [l for l in labels if l not in model_labels]
|
|
existing_labels = [l for l in labels if l in model_labels]
|
|
has_low_data_warning = False
|
|
has_no_neg_warning = False
|
|
has_ws_ents_error = False
|
|
|
|
msg.divider("Named Entity Recognition")
|
|
msg.info(
|
|
"{} new {}, {} existing {}".format(
|
|
len(new_labels),
|
|
"label" if len(new_labels) == 1 else "labels",
|
|
len(existing_labels),
|
|
"label" if len(existing_labels) == 1 else "labels",
|
|
)
|
|
)
|
|
missing_values = label_counts["-"]
|
|
msg.text(
|
|
"{} missing {} (tokens with '-' label)".format(
|
|
missing_values, "value" if missing_values == 1 else "values"
|
|
)
|
|
)
|
|
if new_labels:
|
|
labels_with_counts = [
|
|
(label, count)
|
|
for label, count in label_counts.most_common()
|
|
if label != "-"
|
|
]
|
|
labels_with_counts = _format_labels(labels_with_counts, counts=True)
|
|
msg.text("New: {}".format(labels_with_counts), show=verbose)
|
|
if existing_labels:
|
|
msg.text(
|
|
"Existing: {}".format(_format_labels(existing_labels)), show=verbose
|
|
)
|
|
|
|
if gold_train_data["ws_ents"]:
|
|
msg.fail(
|
|
"{} invalid whitespace entity spans".format(gold_train_data["ws_ents"])
|
|
)
|
|
has_ws_ents_error = True
|
|
|
|
for label in new_labels:
|
|
if label_counts[label] <= NEW_LABEL_THRESHOLD:
|
|
msg.warn(
|
|
"Low number of examples for new label '{}' ({})".format(
|
|
label, label_counts[label]
|
|
)
|
|
)
|
|
has_low_data_warning = True
|
|
|
|
with msg.loading("Analyzing label distribution..."):
|
|
neg_docs = _get_examples_without_label(train_docs, label)
|
|
if neg_docs == 0:
|
|
msg.warn(
|
|
"No examples for texts WITHOUT new label '{}'".format(label)
|
|
)
|
|
has_no_neg_warning = True
|
|
|
|
if not has_low_data_warning:
|
|
msg.good("Good amount of examples for all labels")
|
|
if not has_no_neg_warning:
|
|
msg.good("Examples without occurrences available for all labels")
|
|
if not has_ws_ents_error:
|
|
msg.good("No entities consisting of or starting/ending with whitespace")
|
|
|
|
if has_low_data_warning:
|
|
msg.text(
|
|
"To train a new entity type, your data should include at "
|
|
"least {} instances of the new label".format(NEW_LABEL_THRESHOLD),
|
|
show=verbose,
|
|
)
|
|
if has_no_neg_warning:
|
|
msg.text(
|
|
"Training data should always include examples of entities "
|
|
"in context, as well as examples without a given entity "
|
|
"type.",
|
|
show=verbose,
|
|
)
|
|
if has_ws_ents_error:
|
|
msg.text(
|
|
"As of spaCy v2.1.0, entity spans consisting of or starting/ending "
|
|
"with whitespace characters are considered invalid."
|
|
)
|
|
|
|
if "textcat" in pipeline:
|
|
msg.divider("Text Classification")
|
|
labels = [label for label in gold_train_data["cats"]]
|
|
model_labels = _get_labels_from_model(nlp, "textcat")
|
|
new_labels = [l for l in labels if l not in model_labels]
|
|
existing_labels = [l for l in labels if l in model_labels]
|
|
msg.info(
|
|
"Text Classification: {} new label(s), {} existing label(s)".format(
|
|
len(new_labels), len(existing_labels)
|
|
)
|
|
)
|
|
if new_labels:
|
|
labels_with_counts = _format_labels(
|
|
gold_train_data["cats"].most_common(), counts=True
|
|
)
|
|
msg.text("New: {}".format(labels_with_counts), show=verbose)
|
|
if existing_labels:
|
|
msg.text(
|
|
"Existing: {}".format(_format_labels(existing_labels)), show=verbose
|
|
)
|
|
if set(gold_train_data["cats"]) != set(gold_dev_data["cats"]):
|
|
msg.fail(
|
|
"The train and dev labels are not the same. "
|
|
"Train labels: {}. "
|
|
"Dev labels: {}.".format(
|
|
_format_labels(gold_train_data["cats"]),
|
|
_format_labels(gold_dev_data["cats"]),
|
|
)
|
|
)
|
|
if gold_train_data["n_cats_multilabel"] > 0:
|
|
msg.info(
|
|
"The train data contains instances without "
|
|
"mutually-exclusive classes. Use '--textcat-multilabel' "
|
|
"when training."
|
|
)
|
|
if gold_dev_data["n_cats_multilabel"] == 0:
|
|
msg.warn(
|
|
"Potential train/dev mismatch: the train data contains "
|
|
"instances without mutually-exclusive classes while the "
|
|
"dev data does not."
|
|
)
|
|
else:
|
|
msg.info(
|
|
"The train data contains only instances with "
|
|
"mutually-exclusive classes."
|
|
)
|
|
if gold_dev_data["n_cats_multilabel"] > 0:
|
|
msg.fail(
|
|
"Train/dev mismatch: the dev data contains instances "
|
|
"without mutually-exclusive classes while the train data "
|
|
"contains only instances with mutually-exclusive classes."
|
|
)
|
|
|
|
if "tagger" in pipeline:
|
|
msg.divider("Part-of-speech Tagging")
|
|
labels = [label for label in gold_train_data["tags"]]
|
|
tag_map = nlp.Defaults.tag_map
|
|
msg.info(
|
|
"{} {} in data ({} {} in tag map)".format(
|
|
len(labels),
|
|
"label" if len(labels) == 1 else "labels",
|
|
len(tag_map),
|
|
"label" if len(tag_map) == 1 else "labels",
|
|
)
|
|
)
|
|
labels_with_counts = _format_labels(
|
|
gold_train_data["tags"].most_common(), counts=True
|
|
)
|
|
msg.text(labels_with_counts, show=verbose)
|
|
non_tagmap = [l for l in labels if l not in tag_map]
|
|
if not non_tagmap:
|
|
msg.good("All labels present in tag map for language '{}'".format(nlp.lang))
|
|
for label in non_tagmap:
|
|
msg.fail(
|
|
"Label '{}' not found in tag map for language '{}'".format(
|
|
label, nlp.lang
|
|
)
|
|
)
|
|
|
|
if "parser" in pipeline:
|
|
msg.divider("Dependency Parsing")
|
|
|
|
# profile sentence length
|
|
msg.info(
|
|
"Found {} sentence{} with an average length of {:.1f} words.".format(
|
|
gold_train_data["n_sents"],
|
|
"s" if len(train_docs) > 1 else "",
|
|
gold_train_data["n_words"] / gold_train_data["n_sents"],
|
|
)
|
|
)
|
|
|
|
# profile labels
|
|
labels_train = [label for label in gold_train_data["deps"]]
|
|
labels_train_unpreprocessed = [
|
|
label for label in gold_train_unpreprocessed_data["deps"]
|
|
]
|
|
labels_dev = [label for label in gold_dev_data["deps"]]
|
|
|
|
if gold_train_unpreprocessed_data["n_nonproj"] > 0:
|
|
msg.info(
|
|
"Found {} nonprojective train sentence{}".format(
|
|
gold_train_unpreprocessed_data["n_nonproj"],
|
|
"s" if gold_train_unpreprocessed_data["n_nonproj"] > 1 else "",
|
|
)
|
|
)
|
|
if gold_dev_data["n_nonproj"] > 0:
|
|
msg.info(
|
|
"Found {} nonprojective dev sentence{}".format(
|
|
gold_dev_data["n_nonproj"],
|
|
"s" if gold_dev_data["n_nonproj"] > 1 else "",
|
|
)
|
|
)
|
|
|
|
msg.info(
|
|
"{} {} in train data".format(
|
|
len(labels_train_unpreprocessed),
|
|
"label" if len(labels_train) == 1 else "labels",
|
|
)
|
|
)
|
|
msg.info(
|
|
"{} {} in projectivized train data".format(
|
|
len(labels_train), "label" if len(labels_train) == 1 else "labels"
|
|
)
|
|
)
|
|
|
|
labels_with_counts = _format_labels(
|
|
gold_train_unpreprocessed_data["deps"].most_common(), counts=True
|
|
)
|
|
msg.text(labels_with_counts, show=verbose)
|
|
|
|
# rare labels in train
|
|
for label in gold_train_unpreprocessed_data["deps"]:
|
|
if gold_train_unpreprocessed_data["deps"][label] <= DEP_LABEL_THRESHOLD:
|
|
msg.warn(
|
|
"Low number of examples for label '{}' ({})".format(
|
|
label, gold_train_unpreprocessed_data["deps"][label]
|
|
)
|
|
)
|
|
has_low_data_warning = True
|
|
|
|
# rare labels in projectivized train
|
|
rare_projectivized_labels = []
|
|
for label in gold_train_data["deps"]:
|
|
if gold_train_data["deps"][label] <= DEP_LABEL_THRESHOLD and "||" in label:
|
|
rare_projectivized_labels.append(
|
|
"{}: {}".format(label, str(gold_train_data["deps"][label]))
|
|
)
|
|
|
|
if len(rare_projectivized_labels) > 0:
|
|
msg.warn(
|
|
"Low number of examples for {} label{} in the "
|
|
"projectivized dependency trees used for training. You may "
|
|
"want to projectivize labels such as punct before "
|
|
"training in order to improve parser performance.".format(
|
|
len(rare_projectivized_labels),
|
|
"s" if len(rare_projectivized_labels) > 1 else "",
|
|
)
|
|
)
|
|
msg.warn(
|
|
"Projectivized labels with low numbers of examples: "
|
|
"{}".format("\n".join(rare_projectivized_labels)),
|
|
show=verbose,
|
|
)
|
|
has_low_data_warning = True
|
|
|
|
# labels only in train
|
|
if set(labels_train) - set(labels_dev):
|
|
msg.warn(
|
|
"The following labels were found only in the train data: "
|
|
"{}".format(", ".join(set(labels_train) - set(labels_dev))),
|
|
show=verbose,
|
|
)
|
|
|
|
# labels only in dev
|
|
if set(labels_dev) - set(labels_train):
|
|
msg.warn(
|
|
"The following labels were found only in the dev data: "
|
|
+ ", ".join(set(labels_dev) - set(labels_train)),
|
|
show=verbose,
|
|
)
|
|
|
|
if has_low_data_warning:
|
|
msg.text(
|
|
"To train a parser, your data should include at "
|
|
"least {} instances of each label.".format(DEP_LABEL_THRESHOLD),
|
|
show=verbose,
|
|
)
|
|
|
|
# multiple root labels
|
|
if len(gold_train_unpreprocessed_data["roots"]) > 1:
|
|
msg.warn(
|
|
"Multiple root labels ({}) ".format(
|
|
", ".join(gold_train_unpreprocessed_data["roots"])
|
|
)
|
|
+ "found in training data. spaCy's parser uses a single root "
|
|
"label ROOT so this distinction will not be available."
|
|
)
|
|
|
|
# these should not happen, but just in case
|
|
if gold_train_data["n_nonproj"] > 0:
|
|
msg.fail(
|
|
"Found {} nonprojective projectivized train sentence{}".format(
|
|
gold_train_data["n_nonproj"],
|
|
"s" if gold_train_data["n_nonproj"] > 1 else "",
|
|
)
|
|
)
|
|
if gold_train_data["n_cycles"] > 0:
|
|
msg.fail(
|
|
"Found {} projectivized train sentence{} with cycles".format(
|
|
gold_train_data["n_cycles"],
|
|
"s" if gold_train_data["n_cycles"] > 1 else "",
|
|
)
|
|
)
|
|
|
|
msg.divider("Summary")
|
|
good_counts = msg.counts[MESSAGES.GOOD]
|
|
warn_counts = msg.counts[MESSAGES.WARN]
|
|
fail_counts = msg.counts[MESSAGES.FAIL]
|
|
if good_counts:
|
|
msg.good(
|
|
"{} {} passed".format(
|
|
good_counts, "check" if good_counts == 1 else "checks"
|
|
)
|
|
)
|
|
if warn_counts:
|
|
msg.warn(
|
|
"{} {}".format(warn_counts, "warning" if warn_counts == 1 else "warnings")
|
|
)
|
|
if fail_counts:
|
|
msg.fail("{} {}".format(fail_counts, "error" if fail_counts == 1 else "errors"))
|
|
|
|
if fail_counts:
|
|
sys.exit(1)
|
|
|
|
|
|
def _load_file(file_path, msg):
|
|
file_name = file_path.parts[-1]
|
|
if file_path.suffix == ".json":
|
|
with msg.loading("Loading {}...".format(file_name)):
|
|
data = srsly.read_json(file_path)
|
|
msg.good("Loaded {}".format(file_name))
|
|
return data
|
|
elif file_path.suffix == ".jsonl":
|
|
with msg.loading("Loading {}...".format(file_name)):
|
|
data = srsly.read_jsonl(file_path)
|
|
msg.good("Loaded {}".format(file_name))
|
|
return data
|
|
msg.fail(
|
|
"Can't load file extension {}".format(file_path.suffix),
|
|
"Expected .json or .jsonl",
|
|
exits=1,
|
|
)
|
|
|
|
|
|
def _compile_gold(train_docs, pipeline):
|
|
data = {
|
|
"ner": Counter(),
|
|
"cats": Counter(),
|
|
"tags": Counter(),
|
|
"deps": Counter(),
|
|
"words": Counter(),
|
|
"roots": Counter(),
|
|
"ws_ents": 0,
|
|
"n_words": 0,
|
|
"n_misaligned_words": 0,
|
|
"n_sents": 0,
|
|
"n_nonproj": 0,
|
|
"n_cycles": 0,
|
|
"n_cats_multilabel": 0,
|
|
"texts": set(),
|
|
}
|
|
for doc, gold in train_docs:
|
|
valid_words = [x for x in gold.words if x is not None]
|
|
data["words"].update(valid_words)
|
|
data["n_words"] += len(valid_words)
|
|
data["n_misaligned_words"] += len(gold.words) - len(valid_words)
|
|
data["texts"].add(doc.text)
|
|
if "ner" in pipeline:
|
|
for i, label in enumerate(gold.ner):
|
|
if label is None:
|
|
continue
|
|
if label.startswith(("B-", "U-", "L-")) and doc[i].is_space:
|
|
# "Illegal" whitespace entity
|
|
data["ws_ents"] += 1
|
|
if label.startswith(("B-", "U-")):
|
|
combined_label = label.split("-")[1]
|
|
data["ner"][combined_label] += 1
|
|
elif label == "-":
|
|
data["ner"]["-"] += 1
|
|
if "textcat" in pipeline:
|
|
data["cats"].update(gold.cats)
|
|
if list(gold.cats.values()).count(1.0) != 1:
|
|
data["n_cats_multilabel"] += 1
|
|
if "tagger" in pipeline:
|
|
data["tags"].update([x for x in gold.tags if x is not None])
|
|
if "parser" in pipeline:
|
|
data["deps"].update([x for x in gold.labels if x is not None])
|
|
for i, (dep, head) in enumerate(zip(gold.labels, gold.heads)):
|
|
if head == i:
|
|
data["roots"].update([dep])
|
|
data["n_sents"] += 1
|
|
if nonproj.is_nonproj_tree(gold.heads):
|
|
data["n_nonproj"] += 1
|
|
if nonproj.contains_cycle(gold.heads):
|
|
data["n_cycles"] += 1
|
|
return data
|
|
|
|
|
|
def _format_labels(labels, counts=False):
|
|
if counts:
|
|
return ", ".join(["'{}' ({})".format(l, c) for l, c in labels])
|
|
return ", ".join(["'{}'".format(l) for l in labels])
|
|
|
|
|
|
def _get_examples_without_label(data, label):
|
|
count = 0
|
|
for doc, gold in data:
|
|
labels = [label.split("-")[1] for label in gold.ner if label not in ("O", "-")]
|
|
if label not in labels:
|
|
count += 1
|
|
return count
|
|
|
|
|
|
def _get_labels_from_model(nlp, pipe_name):
|
|
if pipe_name not in nlp.pipe_names:
|
|
return set()
|
|
pipe = nlp.get_pipe(pipe_name)
|
|
return pipe.labels
|