spaCy/spacy/cli/templates/quickstart_training.jinja
Lj Miranda 53687b5bca Add spancat_singlelabel pipeline for multiclass and non-overlapping span labelling tasks (#11365)
* [wip] Update

* [wip] Update

* Add initial port

* [wip] Update

* Fix all imports

* Add spancat_exclusive to pipeline

* [WIP] Update

* [ci skip] Add breakpoint for debugging

* Use spacy.SpanCategorizer.v1 as default archi

* Update spacy/pipeline/spancat_exclusive.py

Co-authored-by: kadarakos <kadar.akos@gmail.com>

* [ci skip] Small updates

* Use Softmax v2 directly from thinc

* Cache the label map

* Fix mypy errors

However, I ignored line 370 because it opened up a bunch of type errors
that might be trickier to solve and might lead to a more complicated
codebase.

* avoid multiplication with 1.0

Co-authored-by: kadarakos <kadar.akos@gmail.com>

* Update spacy/pipeline/spancat_exclusive.py

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* Update component versions to v2

* Add scorer to docstring

* Add _n_labels property to SpanCategorizer

Instead of using len(self.labels) in initialize() I am using a private
property self._n_labels. This achieves implementation parity and allows
me to delete the whole initialize() method for spancat_exclusive (since
it's now the same with spancat).

* Inherit from SpanCat instead of TrainablePipe

This commit changes the inheritance structure of Exclusive_Spancat,
now it's inheriting from SpanCategorizer than TrainablePipe. This
allows me to remove duplicate methods that are already present in
the parent function.

* Revert documentation link to spancat

* Fix init call for exclusive spancat

* Update spacy/pipeline/spancat_exclusive.py

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>

* Import Suggester from spancat

* Include zero_init.v1 for spancat

* Implement _allow_extra_label to use _n_labels

To ensure that spancat / spancat_exclusive cannot be resized after
initialization, I inherited the _allow_extra_label() method from
spacy/pipeline/trainable_pipe.pyx and used self._n_labels instead
of len(self.labels) for checking.

I think that changing it locally is a better solution rather than
forcing each class that inherits TrainablePipe to use the self._n_labels
attribute.

Also note that I turned-off black formatting in this block of code
because it reads better without the overhang.

* Extend existing tests to spancat_exclusive

In this commit, I extended the existing tests for spancat to include
spancat_exclusive. I parametrized the test functions with 'name'
(similar var name with textcat and textcat_multilabel) for each
applicable test.

TODO: Add overfitting tests for spancat_exclusive

* Update documentation for spancat

* Turn on formatting for allow_extra_label

* Remove initializers in default config

* Use DEFAULT_EXCL_SPANCAT_MODEL

I also renamed spancat_exclusive_default_config into
spancat_excl_default_config because black does some not pretty
formatting changes.

* Update documentation

Update grammar and usage

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>

* Clarify docstring for Exclusive_SpanCategorizer

* Remove mypy ignore and typecast labels to list

* Fix documentation API

* Use a single variable for tests

* Update defaults for number of rows

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>

* Put back initializers in spancat config

Whenever I remove model.scorer.init_w and model.scorer.init_b,
I encounter an error in the test:

    SystemError: <method '__getitem__' of 'dict' objects> returned a result
    with an error set.

My Thinc version is 8.1.5, but I can't seem to check what's causing the
error.

* Update spancat_exclusive docstring

* Remove init_W and init_B parameters

This commit is expected to fail until the new Thinc release.

* Require thinc>=8.1.6 for serializable Softmax defaults

* Handle zero suggestions to make tests pass

I'm not sure if this is the most elegant solution. But what should
happen is that the _make_span_group function MUST return an empty
SpanGroup if there are no suggestions.

The error happens when the 'scores' variable is empty. We cannot
get the 'predicted' and other downstream vars.

* Better approach for handling zero suggestions

* Update website/docs/api/spancategorizer.md

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>

* Update spancategorizer headers

* Apply suggestions from code review

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* Add default value in negative_weight in docs

* Add default value in allow_overlap in docs

* Update how spancat_exclusive is constructed

In this commit, I added the following:
- Put the default values of negative_weight and allow_overlap
    in the default_config dictionary.
- Rename make_spancat -> make_exclusive_spancat

* Run prettier on spancategorizer.mdx

* Change exactly one -> at most one

* Add suggester documentation in Exclusive_SpanCategorizer

* Add suggester to spancat docstrings

* merge multilabel and singlelabel spancat

* rename spancat_exclusive to singlelable

* wire up different make_spangroups for single and multilabel

* black

* black

* add docstrings

* more docstring and fix negative_label

* don't rely on default arguments

* black

* remove spancat exclusive

* replace single_label with add_negative_label and adjust inference

* mypy

* logical bug in configuration check

* add spans.attrs[scores]

* single label make_spangroup test

* bugfix

* black

* tests for make_span_group with negative labels

* refactor make_span_group

* black

* Update spacy/tests/pipeline/test_spancat.py

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>

* remove duplicate declaration

* Update spacy/pipeline/spancat.py

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>

* raise error instead of just print

* make label mapper private

* update docs

* run prettier

* Update website/docs/api/spancategorizer.mdx

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>

* Update website/docs/api/spancategorizer.mdx

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>

* Update spacy/pipeline/spancat.py

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>

* Update spacy/pipeline/spancat.py

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>

* Update spacy/pipeline/spancat.py

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>

* Update spacy/pipeline/spancat.py

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>

* don't keep recomputing self._label_map for each span

* typo in docs

* Intervals to private and document 'name' param

* Update spacy/pipeline/spancat.py

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>

* Update spacy/pipeline/spancat.py

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>

* add Tag to new features

* replace tags

* revert

* revert

* revert

* revert

* Update website/docs/api/spancategorizer.mdx

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>

* Update website/docs/api/spancategorizer.mdx

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>

* prettier

* Fix merge

* Update website/docs/api/spancategorizer.mdx

* remove references to 'single_label'

* remove old paragraph

* Add spancat_singlelabel to config template

* Format

* Extend init config tests

---------

Co-authored-by: kadarakos <kadar.akos@gmail.com>
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
2023-03-09 10:33:16 +01:00

600 lines
15 KiB
Django/Jinja

{# This is a template for training configs used for the quickstart widget in
the docs and the init config command. It encodes various best practices and
can help generate the best possible configuration, given a user's requirements. #}
{%- set use_transformer = hardware != "cpu" and transformer_data -%}
{%- set transformer = transformer_data[optimize] if use_transformer else {} -%}
{%- set listener_components = ["tagger", "morphologizer", "parser", "ner", "textcat", "textcat_multilabel", "entity_linker", "spancat", "spancat_singlelabel", "trainable_lemmatizer"] -%}
[paths]
train = null
dev = null
{% if use_transformer or optimize == "efficiency" or not word_vectors -%}
vectors = null
{% else -%}
vectors = "{{ word_vectors }}"
{% endif -%}
[system]
{% if use_transformer -%}
gpu_allocator = "pytorch"
{% else -%}
gpu_allocator = null
{% endif %}
[nlp]
lang = "{{ lang }}"
{%- set has_textcat = ("textcat" in components or "textcat_multilabel" in components) -%}
{%- set with_accuracy = optimize == "accuracy" -%}
{# The BOW textcat doesn't need a source of features, so it can omit the
tok2vec/transformer. #}
{%- set with_accuracy_or_transformer = (use_transformer or with_accuracy) -%}
{%- set textcat_needs_features = has_textcat and with_accuracy_or_transformer -%}
{%- if ("tagger" in components or "morphologizer" in components or "parser" in components or "ner" in components or "spancat" in components or "spancat_singlelabel" in components or "trainable_lemmatizer" in components or "entity_linker" in components or textcat_needs_features) -%}
{%- set full_pipeline = ["transformer" if use_transformer else "tok2vec"] + components -%}
{%- else -%}
{%- set full_pipeline = components -%}
{%- endif %}
pipeline = {{ full_pipeline|pprint()|replace("'", '"')|safe }}
batch_size = {{ 128 if hardware == "gpu" else 1000 }}
[components]
{# TRANSFORMER PIPELINE #}
{%- if use_transformer -%}
[components.transformer]
factory = "transformer"
[components.transformer.model]
@architectures = "spacy-transformers.TransformerModel.v3"
name = "{{ transformer["name"] }}"
tokenizer_config = {"use_fast": true}
[components.transformer.model.get_spans]
@span_getters = "spacy-transformers.strided_spans.v1"
window = 128
stride = 96
{% if "morphologizer" in components %}
[components.morphologizer]
factory = "morphologizer"
[components.morphologizer.model]
@architectures = "spacy.Tagger.v2"
nO = null
[components.morphologizer.model.tok2vec]
@architectures = "spacy-transformers.TransformerListener.v1"
grad_factor = 1.0
[components.morphologizer.model.tok2vec.pooling]
@layers = "reduce_mean.v1"
{%- endif %}
{% if "tagger" in components %}
[components.tagger]
factory = "tagger"
[components.tagger.model]
@architectures = "spacy.Tagger.v2"
nO = null
[components.tagger.model.tok2vec]
@architectures = "spacy-transformers.TransformerListener.v1"
grad_factor = 1.0
[components.tagger.model.tok2vec.pooling]
@layers = "reduce_mean.v1"
{%- endif %}
{% if "parser" in components -%}
[components.parser]
factory = "parser"
[components.parser.model]
@architectures = "spacy.TransitionBasedParser.v2"
state_type = "parser"
extra_state_tokens = false
hidden_width = 128
maxout_pieces = 3
use_upper = false
nO = null
[components.parser.model.tok2vec]
@architectures = "spacy-transformers.TransformerListener.v1"
grad_factor = 1.0
[components.parser.model.tok2vec.pooling]
@layers = "reduce_mean.v1"
{%- endif %}
{% if "ner" in components -%}
[components.ner]
factory = "ner"
[components.ner.model]
@architectures = "spacy.TransitionBasedParser.v2"
state_type = "ner"
extra_state_tokens = false
hidden_width = 64
maxout_pieces = 2
use_upper = false
nO = null
[components.ner.model.tok2vec]
@architectures = "spacy-transformers.TransformerListener.v1"
grad_factor = 1.0
[components.ner.model.tok2vec.pooling]
@layers = "reduce_mean.v1"
{% endif -%}
{% if "spancat" in components -%}
[components.spancat]
factory = "spancat"
max_positive = null
scorer = {"@scorers":"spacy.spancat_scorer.v1"}
spans_key = "sc"
threshold = 0.5
[components.spancat.model]
@architectures = "spacy.SpanCategorizer.v1"
[components.spancat.model.reducer]
@layers = "spacy.mean_max_reducer.v1"
hidden_size = 128
[components.spancat.model.scorer]
@layers = "spacy.LinearLogistic.v1"
nO = null
nI = null
[components.spancat.model.tok2vec]
@architectures = "spacy-transformers.TransformerListener.v1"
grad_factor = 1.0
[components.spancat.model.tok2vec.pooling]
@layers = "reduce_mean.v1"
[components.spancat.suggester]
@misc = "spacy.ngram_suggester.v1"
sizes = [1,2,3]
{% endif -%}
{% if "spancat_singlelabel" in components %}
[components.spancat_singlelabel]
factory = "spancat_singlelabel"
negative_weight = 1.0
allow_overlap = true
scorer = {"@scorers":"spacy.spancat_scorer.v1"}
spans_key = "sc"
[components.spancat_singlelabel.model]
@architectures = "spacy.SpanCategorizer.v1"
[components.spancat_singlelabel.model.reducer]
@layers = "spacy.mean_max_reducer.v1"
hidden_size = 128
[components.spancat_singlelabel.model.scorer]
@layers = "Softmax.v2"
[components.spancat_singlelabel.model.tok2vec]
@architectures = "spacy-transformers.TransformerListener.v1"
grad_factor = 1.0
[components.spancat_singlelabel.model.tok2vec.pooling]
@layers = "reduce_mean.v1"
[components.spancat_singlelabel.suggester]
@misc = "spacy.ngram_suggester.v1"
sizes = [1,2,3]
{% endif %}
{% if "trainable_lemmatizer" in components -%}
[components.trainable_lemmatizer]
factory = "trainable_lemmatizer"
backoff = "orth"
min_tree_freq = 3
overwrite = false
scorer = {"@scorers":"spacy.lemmatizer_scorer.v1"}
top_k = 1
[components.trainable_lemmatizer.model]
@architectures = "spacy.Tagger.v2"
nO = null
normalize = false
[components.trainable_lemmatizer.model.tok2vec]
@architectures = "spacy-transformers.TransformerListener.v1"
grad_factor = 1.0
[components.trainable_lemmatizer.model.tok2vec.pooling]
@layers = "reduce_mean.v1"
{% endif -%}
{% if "entity_linker" in components -%}
[components.entity_linker]
factory = "entity_linker"
get_candidates = {"@misc":"spacy.CandidateGenerator.v1"}
incl_context = true
incl_prior = true
[components.entity_linker.model]
@architectures = "spacy.EntityLinker.v2"
nO = null
[components.entity_linker.model.tok2vec]
@architectures = "spacy-transformers.TransformerListener.v1"
grad_factor = 1.0
[components.entity_linker.model.tok2vec.pooling]
@layers = "reduce_mean.v1"
{% endif -%}
{% if "textcat" in components %}
[components.textcat]
factory = "textcat"
{% if optimize == "accuracy" %}
[components.textcat.model]
@architectures = "spacy.TextCatEnsemble.v2"
nO = null
[components.textcat.model.tok2vec]
@architectures = "spacy-transformers.TransformerListener.v1"
grad_factor = 1.0
[components.textcat.model.tok2vec.pooling]
@layers = "reduce_mean.v1"
[components.textcat.model.linear_model]
@architectures = "spacy.TextCatBOW.v2"
exclusive_classes = true
ngram_size = 1
no_output_layer = false
{% else -%}
[components.textcat.model]
@architectures = "spacy.TextCatCNN.v2"
exclusive_classes = true
nO = null
[components.textcat.model.tok2vec]
@architectures = "spacy-transformers.TransformerListener.v1"
grad_factor = 1.0
[components.textcat.model.tok2vec.pooling]
@layers = "reduce_mean.v1"
{%- endif %}
{%- endif %}
{% if "textcat_multilabel" in components %}
[components.textcat_multilabel]
factory = "textcat_multilabel"
{% if optimize == "accuracy" %}
[components.textcat_multilabel.model]
@architectures = "spacy.TextCatEnsemble.v2"
nO = null
[components.textcat_multilabel.model.tok2vec]
@architectures = "spacy-transformers.TransformerListener.v1"
grad_factor = 1.0
[components.textcat_multilabel.model.tok2vec.pooling]
@layers = "reduce_mean.v1"
[components.textcat_multilabel.model.linear_model]
@architectures = "spacy.TextCatBOW.v2"
exclusive_classes = false
ngram_size = 1
no_output_layer = false
{% else -%}
[components.textcat_multilabel.model]
@architectures = "spacy.TextCatCNN.v2"
exclusive_classes = false
nO = null
[components.textcat_multilabel.model.tok2vec]
@architectures = "spacy-transformers.TransformerListener.v1"
grad_factor = 1.0
[components.textcat_multilabel.model.tok2vec.pooling]
@layers = "reduce_mean.v1"
{%- endif %}
{%- endif %}
{# NON-TRANSFORMER PIPELINE #}
{% else -%}
{% if "tok2vec" in full_pipeline -%}
[components.tok2vec]
factory = "tok2vec"
[components.tok2vec.model]
@architectures = "spacy.Tok2Vec.v2"
[components.tok2vec.model.embed]
@architectures = "spacy.MultiHashEmbed.v2"
width = ${components.tok2vec.model.encode.width}
attrs = ["NORM", "PREFIX", "SUFFIX", "SHAPE"]
rows = [5000, 1000, 2500, 2500]
include_static_vectors = {{ "true" if optimize == "accuracy" else "false" }}
[components.tok2vec.model.encode]
@architectures = "spacy.MaxoutWindowEncoder.v2"
width = {{ 96 if optimize == "efficiency" else 256 }}
depth = {{ 4 if optimize == "efficiency" else 8 }}
window_size = 1
maxout_pieces = 3
{% endif -%}
{% if "morphologizer" in components %}
[components.morphologizer]
factory = "morphologizer"
[components.morphologizer.model]
@architectures = "spacy.Tagger.v2"
nO = null
[components.morphologizer.model.tok2vec]
@architectures = "spacy.Tok2VecListener.v1"
width = ${components.tok2vec.model.encode.width}
{%- endif %}
{% if "tagger" in components %}
[components.tagger]
factory = "tagger"
[components.tagger.model]
@architectures = "spacy.Tagger.v2"
nO = null
[components.tagger.model.tok2vec]
@architectures = "spacy.Tok2VecListener.v1"
width = ${components.tok2vec.model.encode.width}
{%- endif %}
{% if "parser" in components -%}
[components.parser]
factory = "parser"
[components.parser.model]
@architectures = "spacy.TransitionBasedParser.v2"
state_type = "parser"
extra_state_tokens = false
hidden_width = 128
maxout_pieces = 3
use_upper = true
nO = null
[components.parser.model.tok2vec]
@architectures = "spacy.Tok2VecListener.v1"
width = ${components.tok2vec.model.encode.width}
{%- endif %}
{% if "ner" in components %}
[components.ner]
factory = "ner"
[components.ner.model]
@architectures = "spacy.TransitionBasedParser.v2"
state_type = "ner"
extra_state_tokens = false
hidden_width = 64
maxout_pieces = 2
use_upper = true
nO = null
[components.ner.model.tok2vec]
@architectures = "spacy.Tok2VecListener.v1"
width = ${components.tok2vec.model.encode.width}
{% endif %}
{% if "spancat" in components %}
[components.spancat]
factory = "spancat"
max_positive = null
scorer = {"@scorers":"spacy.spancat_scorer.v1"}
spans_key = "sc"
threshold = 0.5
[components.spancat.model]
@architectures = "spacy.SpanCategorizer.v1"
[components.spancat.model.reducer]
@layers = "spacy.mean_max_reducer.v1"
hidden_size = 128
[components.spancat.model.scorer]
@layers = "spacy.LinearLogistic.v1"
nO = null
nI = null
[components.spancat.model.tok2vec]
@architectures = "spacy.Tok2VecListener.v1"
width = ${components.tok2vec.model.encode.width}
[components.spancat.suggester]
@misc = "spacy.ngram_suggester.v1"
sizes = [1,2,3]
{% endif %}
{% if "spancat_singlelabel" in components %}
[components.spancat_singlelabel]
factory = "spancat_singlelabel"
negative_weight = 1.0
allow_overlap = true
scorer = {"@scorers":"spacy.spancat_scorer.v1"}
spans_key = "sc"
[components.spancat_singlelabel.model]
@architectures = "spacy.SpanCategorizer.v1"
[components.spancat_singlelabel.model.reducer]
@layers = "spacy.mean_max_reducer.v1"
hidden_size = 128
[components.spancat_singlelabel.model.scorer]
@layers = "Softmax.v2"
[components.spancat_singlelabel.model.tok2vec]
@architectures = "spacy.Tok2VecListener.v1"
width = ${components.tok2vec.model.encode.width}
[components.spancat_singlelabel.suggester]
@misc = "spacy.ngram_suggester.v1"
sizes = [1,2,3]
{% endif %}
{% if "trainable_lemmatizer" in components -%}
[components.trainable_lemmatizer]
factory = "trainable_lemmatizer"
backoff = "orth"
min_tree_freq = 3
overwrite = false
scorer = {"@scorers":"spacy.lemmatizer_scorer.v1"}
top_k = 1
[components.trainable_lemmatizer.model]
@architectures = "spacy.Tagger.v2"
nO = null
normalize = false
[components.trainable_lemmatizer.model.tok2vec]
@architectures = "spacy.Tok2VecListener.v1"
width = ${components.tok2vec.model.encode.width}
{% endif -%}
{% if "entity_linker" in components -%}
[components.entity_linker]
factory = "entity_linker"
get_candidates = {"@misc":"spacy.CandidateGenerator.v1"}
incl_context = true
incl_prior = true
[components.entity_linker.model]
@architectures = "spacy.EntityLinker.v2"
nO = null
[components.entity_linker.model.tok2vec]
@architectures = "spacy.Tok2VecListener.v1"
width = ${components.tok2vec.model.encode.width}
{% endif %}
{% if "textcat" in components %}
[components.textcat]
factory = "textcat"
{% if optimize == "accuracy" %}
[components.textcat.model]
@architectures = "spacy.TextCatEnsemble.v2"
nO = null
[components.textcat.model.tok2vec]
@architectures = "spacy.Tok2VecListener.v1"
width = ${components.tok2vec.model.encode.width}
[components.textcat.model.linear_model]
@architectures = "spacy.TextCatBOW.v2"
exclusive_classes = true
ngram_size = 1
no_output_layer = false
{% else -%}
[components.textcat.model]
@architectures = "spacy.TextCatBOW.v2"
exclusive_classes = true
ngram_size = 1
no_output_layer = false
{%- endif %}
{%- endif %}
{% if "textcat_multilabel" in components %}
[components.textcat_multilabel]
factory = "textcat_multilabel"
{% if optimize == "accuracy" %}
[components.textcat_multilabel.model]
@architectures = "spacy.TextCatEnsemble.v2"
nO = null
[components.textcat_multilabel.model.tok2vec]
@architectures = "spacy.Tok2VecListener.v1"
width = ${components.tok2vec.model.encode.width}
[components.textcat_multilabel.model.linear_model]
@architectures = "spacy.TextCatBOW.v2"
exclusive_classes = false
ngram_size = 1
no_output_layer = false
{% else -%}
[components.textcat_multilabel.model]
@architectures = "spacy.TextCatBOW.v2"
exclusive_classes = false
ngram_size = 1
no_output_layer = false
{%- endif %}
{%- endif %}
{% endif %}
{% for pipe in components %}
{% if pipe not in listener_components %}
{# Other components defined by the user: we just assume they're factories #}
[components.{{ pipe }}]
factory = "{{ pipe }}"
{% endif %}
{% endfor %}
[corpora]
[corpora.train]
@readers = "spacy.Corpus.v1"
path = ${paths.train}
max_length = 0
[corpora.dev]
@readers = "spacy.Corpus.v1"
path = ${paths.dev}
max_length = 0
[training]
{% if use_transformer -%}
accumulate_gradient = {{ transformer["size_factor"] }}
{% endif -%}
dev_corpus = "corpora.dev"
train_corpus = "corpora.train"
[training.optimizer]
@optimizers = "Adam.v1"
{% if use_transformer -%}
[training.optimizer.learn_rate]
@schedules = "warmup_linear.v1"
warmup_steps = 250
total_steps = 20000
initial_rate = 5e-5
{% endif %}
{% if use_transformer %}
[training.batcher]
@batchers = "spacy.batch_by_padded.v1"
discard_oversize = true
size = 2000
buffer = 256
{%- else %}
[training.batcher]
@batchers = "spacy.batch_by_words.v1"
discard_oversize = false
tolerance = 0.2
[training.batcher.size]
@schedules = "compounding.v1"
start = 100
stop = 1000
compound = 1.001
{% endif %}
[initialize]
vectors = ${paths.vectors}