mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-01 04:46:38 +03:00
1263 lines
46 KiB
Python
1263 lines
46 KiB
Python
from typing import Callable, Iterable, Dict, Any, cast
|
|
|
|
import pytest
|
|
from numpy.testing import assert_equal
|
|
from thinc.types import Ragged
|
|
|
|
from spacy import registry, util
|
|
from spacy.attrs import ENT_KB_ID
|
|
from spacy.compat import pickle
|
|
from spacy.kb import Candidate, InMemoryLookupKB, get_candidates, KnowledgeBase
|
|
from spacy.lang.en import English
|
|
from spacy.ml import load_kb
|
|
from spacy.pipeline import EntityLinker, TrainablePipe
|
|
from spacy.pipeline.legacy import EntityLinker_v1
|
|
from spacy.pipeline.tok2vec import DEFAULT_TOK2VEC_MODEL
|
|
from spacy.scorer import Scorer
|
|
from spacy.tests.util import make_tempdir
|
|
from spacy.tokens import Span, Doc
|
|
from spacy.training import Example
|
|
from spacy.util import ensure_path
|
|
from spacy.vocab import Vocab
|
|
|
|
|
|
@pytest.fixture
|
|
def nlp():
|
|
return English()
|
|
|
|
|
|
def assert_almost_equal(a, b):
|
|
delta = 0.0001
|
|
assert a - delta <= b <= a + delta
|
|
|
|
|
|
@pytest.mark.issue(4674)
|
|
def test_issue4674():
|
|
"""Test that setting entities with overlapping identifiers does not mess up IO"""
|
|
nlp = English()
|
|
kb = InMemoryLookupKB(nlp.vocab, entity_vector_length=3)
|
|
vector1 = [0.9, 1.1, 1.01]
|
|
vector2 = [1.8, 2.25, 2.01]
|
|
with pytest.warns(UserWarning):
|
|
kb.set_entities(
|
|
entity_list=["Q1", "Q1"],
|
|
freq_list=[32, 111],
|
|
vector_list=[vector1, vector2],
|
|
)
|
|
assert kb.get_size_entities() == 1
|
|
# dumping to file & loading back in
|
|
with make_tempdir() as d:
|
|
dir_path = ensure_path(d)
|
|
if not dir_path.exists():
|
|
dir_path.mkdir()
|
|
file_path = dir_path / "kb"
|
|
kb.to_disk(str(file_path))
|
|
kb2 = InMemoryLookupKB(nlp.vocab, entity_vector_length=3)
|
|
kb2.from_disk(str(file_path))
|
|
assert kb2.get_size_entities() == 1
|
|
|
|
|
|
@pytest.mark.issue(6730)
|
|
def test_issue6730(en_vocab):
|
|
"""Ensure that the KB does not accept empty strings, but otherwise IO works fine."""
|
|
from spacy.kb.kb_in_memory import InMemoryLookupKB
|
|
|
|
kb = InMemoryLookupKB(en_vocab, entity_vector_length=3)
|
|
kb.add_entity(entity="1", freq=148, entity_vector=[1, 2, 3])
|
|
|
|
with pytest.raises(ValueError):
|
|
kb.add_alias(alias="", entities=["1"], probabilities=[0.4])
|
|
assert kb.contains_alias("") is False
|
|
|
|
kb.add_alias(alias="x", entities=["1"], probabilities=[0.2])
|
|
kb.add_alias(alias="y", entities=["1"], probabilities=[0.1])
|
|
|
|
with make_tempdir() as tmp_dir:
|
|
kb.to_disk(tmp_dir)
|
|
kb.from_disk(tmp_dir)
|
|
assert kb.get_size_aliases() == 2
|
|
assert set(kb.get_alias_strings()) == {"x", "y"}
|
|
|
|
|
|
@pytest.mark.issue(7065)
|
|
def test_issue7065():
|
|
text = "Kathleen Battle sang in Mahler 's Symphony No. 8 at the Cincinnati Symphony Orchestra 's May Festival."
|
|
nlp = English()
|
|
nlp.add_pipe("sentencizer")
|
|
ruler = nlp.add_pipe("entity_ruler")
|
|
patterns = [
|
|
{
|
|
"label": "THING",
|
|
"pattern": [
|
|
{"LOWER": "symphony"},
|
|
{"LOWER": "no"},
|
|
{"LOWER": "."},
|
|
{"LOWER": "8"},
|
|
],
|
|
}
|
|
]
|
|
ruler.add_patterns(patterns)
|
|
|
|
doc = nlp(text)
|
|
sentences = [s for s in doc.sents]
|
|
assert len(sentences) == 2
|
|
sent0 = sentences[0]
|
|
ent = doc.ents[0]
|
|
assert ent.start < sent0.end < ent.end
|
|
assert sentences.index(ent.sent) == 0
|
|
|
|
|
|
@pytest.mark.issue(7065)
|
|
def test_issue7065_b():
|
|
# Test that the NEL doesn't crash when an entity crosses a sentence boundary
|
|
nlp = English()
|
|
vector_length = 3
|
|
nlp.add_pipe("sentencizer")
|
|
text = "Mahler 's Symphony No. 8 was beautiful."
|
|
entities = [(0, 6, "PERSON"), (10, 24, "WORK")]
|
|
links = {
|
|
(0, 6): {"Q7304": 1.0, "Q270853": 0.0},
|
|
(10, 24): {"Q7304": 0.0, "Q270853": 1.0},
|
|
}
|
|
sent_starts = [1, -1, 0, 0, 0, 0, 0, 0, 0]
|
|
doc = nlp(text)
|
|
example = Example.from_dict(
|
|
doc, {"entities": entities, "links": links, "sent_starts": sent_starts}
|
|
)
|
|
train_examples = [example]
|
|
|
|
def create_kb(vocab):
|
|
# create artificial KB
|
|
mykb = InMemoryLookupKB(vocab, entity_vector_length=vector_length)
|
|
mykb.add_entity(entity="Q270853", freq=12, entity_vector=[9, 1, -7])
|
|
mykb.add_alias(
|
|
alias="No. 8",
|
|
entities=["Q270853"],
|
|
probabilities=[1.0],
|
|
)
|
|
mykb.add_entity(entity="Q7304", freq=12, entity_vector=[6, -4, 3])
|
|
mykb.add_alias(
|
|
alias="Mahler",
|
|
entities=["Q7304"],
|
|
probabilities=[1.0],
|
|
)
|
|
return mykb
|
|
|
|
# Create the Entity Linker component and add it to the pipeline
|
|
entity_linker = nlp.add_pipe("entity_linker", last=True)
|
|
entity_linker.set_kb(create_kb)
|
|
# train the NEL pipe
|
|
optimizer = nlp.initialize(get_examples=lambda: train_examples)
|
|
for i in range(2):
|
|
losses = {}
|
|
nlp.update(train_examples, sgd=optimizer, losses=losses)
|
|
|
|
# Add a custom rule-based component to mimick NER
|
|
patterns = [
|
|
{"label": "PERSON", "pattern": [{"LOWER": "mahler"}]},
|
|
{
|
|
"label": "WORK",
|
|
"pattern": [
|
|
{"LOWER": "symphony"},
|
|
{"LOWER": "no"},
|
|
{"LOWER": "."},
|
|
{"LOWER": "8"},
|
|
],
|
|
},
|
|
]
|
|
ruler = nlp.add_pipe("entity_ruler", before="entity_linker")
|
|
ruler.add_patterns(patterns)
|
|
# test the trained model - this should not throw E148
|
|
doc = nlp(text)
|
|
assert doc
|
|
|
|
|
|
def test_no_entities():
|
|
# Test that having no entities doesn't crash the model
|
|
TRAIN_DATA = [
|
|
(
|
|
"The sky is blue.",
|
|
{
|
|
"sent_starts": [1, 0, 0, 0, 0],
|
|
},
|
|
)
|
|
]
|
|
nlp = English()
|
|
vector_length = 3
|
|
train_examples = []
|
|
for text, annotation in TRAIN_DATA:
|
|
doc = nlp(text)
|
|
train_examples.append(Example.from_dict(doc, annotation))
|
|
|
|
def create_kb(vocab):
|
|
# create artificial KB
|
|
mykb = InMemoryLookupKB(vocab, entity_vector_length=vector_length)
|
|
mykb.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3])
|
|
mykb.add_alias("Russ Cochran", ["Q2146908"], [0.9])
|
|
return mykb
|
|
|
|
# Create and train the Entity Linker
|
|
entity_linker = nlp.add_pipe("entity_linker", last=True)
|
|
entity_linker.set_kb(create_kb)
|
|
optimizer = nlp.initialize(get_examples=lambda: train_examples)
|
|
for i in range(2):
|
|
losses = {}
|
|
nlp.update(train_examples, sgd=optimizer, losses=losses)
|
|
|
|
# adding additional components that are required for the entity_linker
|
|
nlp.add_pipe("sentencizer", first=True)
|
|
|
|
# this will run the pipeline on the examples and shouldn't crash
|
|
nlp.evaluate(train_examples)
|
|
|
|
|
|
def test_partial_links():
|
|
# Test that having some entities on the doc without gold links, doesn't crash
|
|
TRAIN_DATA = [
|
|
(
|
|
"Russ Cochran his reprints include EC Comics.",
|
|
{
|
|
"links": {(0, 12): {"Q2146908": 1.0}},
|
|
"entities": [(0, 12, "PERSON")],
|
|
"sent_starts": [1, -1, 0, 0, 0, 0, 0, 0],
|
|
},
|
|
)
|
|
]
|
|
nlp = English()
|
|
vector_length = 3
|
|
train_examples = []
|
|
for text, annotation in TRAIN_DATA:
|
|
doc = nlp(text)
|
|
train_examples.append(Example.from_dict(doc, annotation))
|
|
|
|
def create_kb(vocab):
|
|
# create artificial KB
|
|
mykb = InMemoryLookupKB(vocab, entity_vector_length=vector_length)
|
|
mykb.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3])
|
|
mykb.add_alias("Russ Cochran", ["Q2146908"], [0.9])
|
|
return mykb
|
|
|
|
# Create and train the Entity Linker
|
|
entity_linker = nlp.add_pipe("entity_linker", last=True)
|
|
entity_linker.set_kb(create_kb)
|
|
optimizer = nlp.initialize(get_examples=lambda: train_examples)
|
|
for i in range(2):
|
|
losses = {}
|
|
nlp.update(train_examples, sgd=optimizer, losses=losses)
|
|
|
|
# adding additional components that are required for the entity_linker
|
|
nlp.add_pipe("sentencizer", first=True)
|
|
patterns = [
|
|
{"label": "PERSON", "pattern": [{"LOWER": "russ"}, {"LOWER": "cochran"}]},
|
|
{"label": "ORG", "pattern": [{"LOWER": "ec"}, {"LOWER": "comics"}]},
|
|
]
|
|
ruler = nlp.add_pipe("entity_ruler", before="entity_linker")
|
|
ruler.add_patterns(patterns)
|
|
|
|
# this will run the pipeline on the examples and shouldn't crash
|
|
results = nlp.evaluate(train_examples)
|
|
assert "PERSON" in results["ents_per_type"]
|
|
assert "PERSON" in results["nel_f_per_type"]
|
|
assert "ORG" in results["ents_per_type"]
|
|
assert "ORG" not in results["nel_f_per_type"]
|
|
|
|
|
|
def test_kb_valid_entities(nlp):
|
|
"""Test the valid construction of a KB with 3 entities and two aliases"""
|
|
mykb = InMemoryLookupKB(nlp.vocab, entity_vector_length=3)
|
|
|
|
# adding entities
|
|
mykb.add_entity(entity="Q1", freq=19, entity_vector=[8, 4, 3])
|
|
mykb.add_entity(entity="Q2", freq=5, entity_vector=[2, 1, 0])
|
|
mykb.add_entity(entity="Q3", freq=25, entity_vector=[-1, -6, 5])
|
|
|
|
# adding aliases
|
|
mykb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.8, 0.2])
|
|
mykb.add_alias(alias="adam", entities=["Q2"], probabilities=[0.9])
|
|
|
|
# test the size of the corresponding KB
|
|
assert mykb.get_size_entities() == 3
|
|
assert mykb.get_size_aliases() == 2
|
|
|
|
# test retrieval of the entity vectors
|
|
assert mykb.get_vector("Q1") == [8, 4, 3]
|
|
assert mykb.get_vector("Q2") == [2, 1, 0]
|
|
assert mykb.get_vector("Q3") == [-1, -6, 5]
|
|
|
|
# test retrieval of prior probabilities
|
|
assert_almost_equal(mykb.get_prior_prob(entity="Q2", alias="douglas"), 0.8)
|
|
assert_almost_equal(mykb.get_prior_prob(entity="Q3", alias="douglas"), 0.2)
|
|
assert_almost_equal(mykb.get_prior_prob(entity="Q342", alias="douglas"), 0.0)
|
|
assert_almost_equal(mykb.get_prior_prob(entity="Q3", alias="douglassssss"), 0.0)
|
|
|
|
|
|
def test_kb_invalid_entities(nlp):
|
|
"""Test the invalid construction of a KB with an alias linked to a non-existing entity"""
|
|
mykb = InMemoryLookupKB(nlp.vocab, entity_vector_length=1)
|
|
|
|
# adding entities
|
|
mykb.add_entity(entity="Q1", freq=19, entity_vector=[1])
|
|
mykb.add_entity(entity="Q2", freq=5, entity_vector=[2])
|
|
mykb.add_entity(entity="Q3", freq=25, entity_vector=[3])
|
|
|
|
# adding aliases - should fail because one of the given IDs is not valid
|
|
with pytest.raises(ValueError):
|
|
mykb.add_alias(
|
|
alias="douglas", entities=["Q2", "Q342"], probabilities=[0.8, 0.2]
|
|
)
|
|
|
|
|
|
def test_kb_invalid_probabilities(nlp):
|
|
"""Test the invalid construction of a KB with wrong prior probabilities"""
|
|
mykb = InMemoryLookupKB(nlp.vocab, entity_vector_length=1)
|
|
|
|
# adding entities
|
|
mykb.add_entity(entity="Q1", freq=19, entity_vector=[1])
|
|
mykb.add_entity(entity="Q2", freq=5, entity_vector=[2])
|
|
mykb.add_entity(entity="Q3", freq=25, entity_vector=[3])
|
|
|
|
# adding aliases - should fail because the sum of the probabilities exceeds 1
|
|
with pytest.raises(ValueError):
|
|
mykb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.8, 0.4])
|
|
|
|
|
|
def test_kb_invalid_combination(nlp):
|
|
"""Test the invalid construction of a KB with non-matching entity and probability lists"""
|
|
mykb = InMemoryLookupKB(nlp.vocab, entity_vector_length=1)
|
|
|
|
# adding entities
|
|
mykb.add_entity(entity="Q1", freq=19, entity_vector=[1])
|
|
mykb.add_entity(entity="Q2", freq=5, entity_vector=[2])
|
|
mykb.add_entity(entity="Q3", freq=25, entity_vector=[3])
|
|
|
|
# adding aliases - should fail because the entities and probabilities vectors are not of equal length
|
|
with pytest.raises(ValueError):
|
|
mykb.add_alias(
|
|
alias="douglas", entities=["Q2", "Q3"], probabilities=[0.3, 0.4, 0.1]
|
|
)
|
|
|
|
|
|
def test_kb_invalid_entity_vector(nlp):
|
|
"""Test the invalid construction of a KB with non-matching entity vector lengths"""
|
|
mykb = InMemoryLookupKB(nlp.vocab, entity_vector_length=3)
|
|
|
|
# adding entities
|
|
mykb.add_entity(entity="Q1", freq=19, entity_vector=[1, 2, 3])
|
|
|
|
# this should fail because the kb's expected entity vector length is 3
|
|
with pytest.raises(ValueError):
|
|
mykb.add_entity(entity="Q2", freq=5, entity_vector=[2])
|
|
|
|
|
|
def test_kb_default(nlp):
|
|
"""Test that the default (empty) KB is loaded upon construction"""
|
|
entity_linker = nlp.add_pipe("entity_linker", config={})
|
|
assert len(entity_linker.kb) == 0
|
|
assert entity_linker.kb.get_size_entities() == 0
|
|
assert entity_linker.kb.get_size_aliases() == 0
|
|
# 64 is the default value from pipeline.entity_linker
|
|
assert entity_linker.kb.entity_vector_length == 64
|
|
|
|
|
|
def test_kb_custom_length(nlp):
|
|
"""Test that the default (empty) KB can be configured with a custom entity length"""
|
|
entity_linker = nlp.add_pipe("entity_linker", config={"entity_vector_length": 35})
|
|
assert len(entity_linker.kb) == 0
|
|
assert entity_linker.kb.get_size_entities() == 0
|
|
assert entity_linker.kb.get_size_aliases() == 0
|
|
assert entity_linker.kb.entity_vector_length == 35
|
|
|
|
|
|
def test_kb_initialize_empty(nlp):
|
|
"""Test that the EL can't initialize without examples"""
|
|
entity_linker = nlp.add_pipe("entity_linker")
|
|
with pytest.raises(TypeError):
|
|
entity_linker.initialize(lambda: [])
|
|
|
|
|
|
def test_kb_serialize(nlp):
|
|
"""Test serialization of the KB"""
|
|
mykb = InMemoryLookupKB(nlp.vocab, entity_vector_length=1)
|
|
with make_tempdir() as d:
|
|
# normal read-write behaviour
|
|
mykb.to_disk(d / "kb")
|
|
mykb.from_disk(d / "kb")
|
|
mykb.to_disk(d / "new" / "kb")
|
|
mykb.from_disk(d / "new" / "kb")
|
|
# allow overwriting an existing file
|
|
mykb.to_disk(d / "kb")
|
|
with pytest.raises(ValueError):
|
|
# can not read from an unknown file
|
|
mykb.from_disk(d / "unknown" / "kb")
|
|
|
|
|
|
@pytest.mark.issue(9137)
|
|
def test_kb_serialize_2(nlp):
|
|
v = [5, 6, 7, 8]
|
|
kb1 = InMemoryLookupKB(vocab=nlp.vocab, entity_vector_length=4)
|
|
kb1.set_entities(["E1"], [1], [v])
|
|
assert kb1.get_vector("E1") == v
|
|
with make_tempdir() as d:
|
|
kb1.to_disk(d / "kb")
|
|
kb2 = InMemoryLookupKB(vocab=nlp.vocab, entity_vector_length=4)
|
|
kb2.from_disk(d / "kb")
|
|
assert kb2.get_vector("E1") == v
|
|
|
|
|
|
def test_kb_set_entities(nlp):
|
|
"""Test that set_entities entirely overwrites the previous set of entities"""
|
|
v = [5, 6, 7, 8]
|
|
v1 = [1, 1, 1, 0]
|
|
v2 = [2, 2, 2, 3]
|
|
kb1 = InMemoryLookupKB(vocab=nlp.vocab, entity_vector_length=4)
|
|
kb1.set_entities(["E0"], [1], [v])
|
|
assert kb1.get_entity_strings() == ["E0"]
|
|
kb1.set_entities(["E1", "E2"], [1, 9], [v1, v2])
|
|
assert set(kb1.get_entity_strings()) == {"E1", "E2"}
|
|
assert kb1.get_vector("E1") == v1
|
|
assert kb1.get_vector("E2") == v2
|
|
with make_tempdir() as d:
|
|
kb1.to_disk(d / "kb")
|
|
kb2 = InMemoryLookupKB(vocab=nlp.vocab, entity_vector_length=4)
|
|
kb2.from_disk(d / "kb")
|
|
assert set(kb2.get_entity_strings()) == {"E1", "E2"}
|
|
assert kb2.get_vector("E1") == v1
|
|
assert kb2.get_vector("E2") == v2
|
|
|
|
|
|
def test_kb_serialize_vocab(nlp):
|
|
"""Test serialization of the KB and custom strings"""
|
|
entity = "MyFunnyID"
|
|
assert entity not in nlp.vocab.strings
|
|
mykb = InMemoryLookupKB(nlp.vocab, entity_vector_length=1)
|
|
assert not mykb.contains_entity(entity)
|
|
mykb.add_entity(entity, freq=342, entity_vector=[3])
|
|
assert mykb.contains_entity(entity)
|
|
assert entity in mykb.vocab.strings
|
|
with make_tempdir() as d:
|
|
# normal read-write behaviour
|
|
mykb.to_disk(d / "kb")
|
|
mykb_new = InMemoryLookupKB(Vocab(), entity_vector_length=1)
|
|
mykb_new.from_disk(d / "kb")
|
|
assert entity in mykb_new.vocab.strings
|
|
|
|
|
|
def test_candidate_generation(nlp):
|
|
"""Test correct candidate generation"""
|
|
mykb = InMemoryLookupKB(nlp.vocab, entity_vector_length=1)
|
|
doc = nlp("douglas adam Adam shrubbery")
|
|
|
|
douglas_ent = doc[0:1]
|
|
adam_ent = doc[1:2]
|
|
Adam_ent = doc[2:3]
|
|
shrubbery_ent = doc[3:4]
|
|
|
|
# adding entities
|
|
mykb.add_entity(entity="Q1", freq=27, entity_vector=[1])
|
|
mykb.add_entity(entity="Q2", freq=12, entity_vector=[2])
|
|
mykb.add_entity(entity="Q3", freq=5, entity_vector=[3])
|
|
|
|
# adding aliases
|
|
mykb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.8, 0.1])
|
|
mykb.add_alias(alias="adam", entities=["Q2"], probabilities=[0.9])
|
|
|
|
# test the size of the relevant candidates
|
|
assert len(get_candidates(mykb, douglas_ent)) == 2
|
|
assert len(get_candidates(mykb, adam_ent)) == 1
|
|
assert len(get_candidates(mykb, Adam_ent)) == 0 # default case sensitive
|
|
assert len(get_candidates(mykb, shrubbery_ent)) == 0
|
|
|
|
# test the content of the candidates
|
|
assert get_candidates(mykb, adam_ent)[0].entity_ == "Q2"
|
|
assert get_candidates(mykb, adam_ent)[0].alias_ == "adam"
|
|
assert_almost_equal(get_candidates(mykb, adam_ent)[0].entity_freq, 12)
|
|
assert_almost_equal(get_candidates(mykb, adam_ent)[0].prior_prob, 0.9)
|
|
|
|
|
|
def test_el_pipe_configuration(nlp):
|
|
"""Test correct candidate generation as part of the EL pipe"""
|
|
nlp.add_pipe("sentencizer")
|
|
pattern = {"label": "PERSON", "pattern": [{"LOWER": "douglas"}]}
|
|
ruler = nlp.add_pipe("entity_ruler")
|
|
ruler.add_patterns([pattern])
|
|
|
|
def create_kb(vocab):
|
|
kb = InMemoryLookupKB(vocab, entity_vector_length=1)
|
|
kb.add_entity(entity="Q2", freq=12, entity_vector=[2])
|
|
kb.add_entity(entity="Q3", freq=5, entity_vector=[3])
|
|
kb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.8, 0.1])
|
|
return kb
|
|
|
|
# run an EL pipe without a trained context encoder, to check the candidate generation step only
|
|
entity_linker = nlp.add_pipe("entity_linker", config={"incl_context": False})
|
|
entity_linker.set_kb(create_kb)
|
|
# With the default get_candidates function, matching is case-sensitive
|
|
text = "Douglas and douglas are not the same."
|
|
doc = nlp(text)
|
|
assert doc[0].ent_kb_id_ == "NIL"
|
|
assert doc[1].ent_kb_id_ == ""
|
|
assert doc[2].ent_kb_id_ == "Q2"
|
|
|
|
def get_lowercased_candidates(kb, span):
|
|
return kb.get_alias_candidates(span.text.lower())
|
|
|
|
def get_lowercased_candidates_batch(kb, spans):
|
|
return [get_lowercased_candidates(kb, span) for span in spans]
|
|
|
|
@registry.misc("spacy.LowercaseCandidateGenerator.v1")
|
|
def create_candidates() -> Callable[
|
|
[InMemoryLookupKB, "Span"], Iterable[Candidate]
|
|
]:
|
|
return get_lowercased_candidates
|
|
|
|
@registry.misc("spacy.LowercaseCandidateBatchGenerator.v1")
|
|
def create_candidates_batch() -> Callable[
|
|
[InMemoryLookupKB, Iterable["Span"]], Iterable[Iterable[Candidate]]
|
|
]:
|
|
return get_lowercased_candidates_batch
|
|
|
|
# replace the pipe with a new one with with a different candidate generator
|
|
entity_linker = nlp.replace_pipe(
|
|
"entity_linker",
|
|
"entity_linker",
|
|
config={
|
|
"incl_context": False,
|
|
"get_candidates": {"@misc": "spacy.LowercaseCandidateGenerator.v1"},
|
|
"get_candidates_batch": {
|
|
"@misc": "spacy.LowercaseCandidateBatchGenerator.v1"
|
|
},
|
|
},
|
|
)
|
|
entity_linker.set_kb(create_kb)
|
|
doc = nlp(text)
|
|
assert doc[0].ent_kb_id_ == "Q2"
|
|
assert doc[1].ent_kb_id_ == ""
|
|
assert doc[2].ent_kb_id_ == "Q2"
|
|
|
|
|
|
def test_nel_nsents(nlp):
|
|
"""Test that n_sents can be set through the configuration"""
|
|
entity_linker = nlp.add_pipe("entity_linker", config={})
|
|
assert entity_linker.n_sents == 0
|
|
entity_linker = nlp.replace_pipe(
|
|
"entity_linker", "entity_linker", config={"n_sents": 2}
|
|
)
|
|
assert entity_linker.n_sents == 2
|
|
|
|
|
|
def test_vocab_serialization(nlp):
|
|
"""Test that string information is retained across storage"""
|
|
mykb = InMemoryLookupKB(nlp.vocab, entity_vector_length=1)
|
|
|
|
# adding entities
|
|
mykb.add_entity(entity="Q1", freq=27, entity_vector=[1])
|
|
q2_hash = mykb.add_entity(entity="Q2", freq=12, entity_vector=[2])
|
|
mykb.add_entity(entity="Q3", freq=5, entity_vector=[3])
|
|
|
|
# adding aliases
|
|
mykb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.4, 0.1])
|
|
adam_hash = mykb.add_alias(alias="adam", entities=["Q2"], probabilities=[0.9])
|
|
|
|
candidates = mykb.get_alias_candidates("adam")
|
|
assert len(candidates) == 1
|
|
assert candidates[0].entity == q2_hash
|
|
assert candidates[0].entity_ == "Q2"
|
|
assert candidates[0].alias == adam_hash
|
|
assert candidates[0].alias_ == "adam"
|
|
|
|
with make_tempdir() as d:
|
|
mykb.to_disk(d / "kb")
|
|
kb_new_vocab = InMemoryLookupKB(Vocab(), entity_vector_length=1)
|
|
kb_new_vocab.from_disk(d / "kb")
|
|
|
|
candidates = kb_new_vocab.get_alias_candidates("adam")
|
|
assert len(candidates) == 1
|
|
assert candidates[0].entity == q2_hash
|
|
assert candidates[0].entity_ == "Q2"
|
|
assert candidates[0].alias == adam_hash
|
|
assert candidates[0].alias_ == "adam"
|
|
|
|
assert kb_new_vocab.get_vector("Q2") == [2]
|
|
assert_almost_equal(kb_new_vocab.get_prior_prob("Q2", "douglas"), 0.4)
|
|
|
|
|
|
def test_append_alias(nlp):
|
|
"""Test that we can append additional alias-entity pairs"""
|
|
mykb = InMemoryLookupKB(nlp.vocab, entity_vector_length=1)
|
|
|
|
# adding entities
|
|
mykb.add_entity(entity="Q1", freq=27, entity_vector=[1])
|
|
mykb.add_entity(entity="Q2", freq=12, entity_vector=[2])
|
|
mykb.add_entity(entity="Q3", freq=5, entity_vector=[3])
|
|
|
|
# adding aliases
|
|
mykb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.4, 0.1])
|
|
mykb.add_alias(alias="adam", entities=["Q2"], probabilities=[0.9])
|
|
|
|
# test the size of the relevant candidates
|
|
assert len(mykb.get_alias_candidates("douglas")) == 2
|
|
|
|
# append an alias
|
|
mykb.append_alias(alias="douglas", entity="Q1", prior_prob=0.2)
|
|
|
|
# test the size of the relevant candidates has been incremented
|
|
assert len(mykb.get_alias_candidates("douglas")) == 3
|
|
|
|
# append the same alias-entity pair again should not work (will throw a warning)
|
|
with pytest.warns(UserWarning):
|
|
mykb.append_alias(alias="douglas", entity="Q1", prior_prob=0.3)
|
|
|
|
# test the size of the relevant candidates remained unchanged
|
|
assert len(mykb.get_alias_candidates("douglas")) == 3
|
|
|
|
|
|
@pytest.mark.filterwarnings("ignore:\\[W036")
|
|
def test_append_invalid_alias(nlp):
|
|
"""Test that append an alias will throw an error if prior probs are exceeding 1"""
|
|
mykb = InMemoryLookupKB(nlp.vocab, entity_vector_length=1)
|
|
|
|
# adding entities
|
|
mykb.add_entity(entity="Q1", freq=27, entity_vector=[1])
|
|
mykb.add_entity(entity="Q2", freq=12, entity_vector=[2])
|
|
mykb.add_entity(entity="Q3", freq=5, entity_vector=[3])
|
|
|
|
# adding aliases
|
|
mykb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.8, 0.1])
|
|
mykb.add_alias(alias="adam", entities=["Q2"], probabilities=[0.9])
|
|
|
|
# append an alias - should fail because the entities and probabilities vectors are not of equal length
|
|
with pytest.raises(ValueError):
|
|
mykb.append_alias(alias="douglas", entity="Q1", prior_prob=0.2)
|
|
|
|
|
|
@pytest.mark.filterwarnings("ignore:\\[W036")
|
|
def test_preserving_links_asdoc(nlp):
|
|
"""Test that Span.as_doc preserves the existing entity links"""
|
|
vector_length = 1
|
|
|
|
def create_kb(vocab):
|
|
mykb = InMemoryLookupKB(vocab, entity_vector_length=vector_length)
|
|
# adding entities
|
|
mykb.add_entity(entity="Q1", freq=19, entity_vector=[1])
|
|
mykb.add_entity(entity="Q2", freq=8, entity_vector=[1])
|
|
# adding aliases
|
|
mykb.add_alias(alias="Boston", entities=["Q1"], probabilities=[0.7])
|
|
mykb.add_alias(alias="Denver", entities=["Q2"], probabilities=[0.6])
|
|
return mykb
|
|
|
|
# set up pipeline with NER (Entity Ruler) and NEL (prior probability only, model not trained)
|
|
nlp.add_pipe("sentencizer")
|
|
patterns = [
|
|
{"label": "GPE", "pattern": "Boston"},
|
|
{"label": "GPE", "pattern": "Denver"},
|
|
]
|
|
ruler = nlp.add_pipe("entity_ruler")
|
|
ruler.add_patterns(patterns)
|
|
config = {"incl_prior": False}
|
|
entity_linker = nlp.add_pipe("entity_linker", config=config, last=True)
|
|
entity_linker.set_kb(create_kb)
|
|
nlp.initialize()
|
|
assert entity_linker.model.get_dim("nO") == vector_length
|
|
|
|
# test whether the entity links are preserved by the `as_doc()` function
|
|
text = "She lives in Boston. He lives in Denver."
|
|
doc = nlp(text)
|
|
for ent in doc.ents:
|
|
orig_text = ent.text
|
|
orig_kb_id = ent.kb_id_
|
|
sent_doc = ent.sent.as_doc()
|
|
for s_ent in sent_doc.ents:
|
|
if s_ent.text == orig_text:
|
|
assert s_ent.kb_id_ == orig_kb_id
|
|
|
|
|
|
def test_preserving_links_ents(nlp):
|
|
"""Test that doc.ents preserves KB annotations"""
|
|
text = "She lives in Boston. He lives in Denver."
|
|
doc = nlp(text)
|
|
assert len(list(doc.ents)) == 0
|
|
|
|
boston_ent = Span(doc, 3, 4, label="LOC", kb_id="Q1")
|
|
doc.ents = [boston_ent]
|
|
assert len(list(doc.ents)) == 1
|
|
assert list(doc.ents)[0].label_ == "LOC"
|
|
assert list(doc.ents)[0].kb_id_ == "Q1"
|
|
|
|
|
|
def test_preserving_links_ents_2(nlp):
|
|
"""Test that doc.ents preserves KB annotations"""
|
|
text = "She lives in Boston. He lives in Denver."
|
|
doc = nlp(text)
|
|
assert len(list(doc.ents)) == 0
|
|
|
|
loc = doc.vocab.strings.add("LOC")
|
|
q1 = doc.vocab.strings.add("Q1")
|
|
|
|
doc.ents = [(loc, q1, 3, 4)]
|
|
assert len(list(doc.ents)) == 1
|
|
assert list(doc.ents)[0].label_ == "LOC"
|
|
assert list(doc.ents)[0].kb_id_ == "Q1"
|
|
|
|
|
|
# fmt: off
|
|
TRAIN_DATA = [
|
|
("Russ Cochran captured his first major title with his son as caddie.",
|
|
{"links": {(0, 12): {"Q7381115": 0.0, "Q2146908": 1.0}},
|
|
"entities": [(0, 12, "PERSON")],
|
|
"sent_starts": [1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]}),
|
|
("Russ Cochran his reprints include EC Comics.",
|
|
{"links": {(0, 12): {"Q7381115": 1.0, "Q2146908": 0.0}},
|
|
"entities": [(0, 12, "PERSON"), (34, 43, "ART")],
|
|
"sent_starts": [1, -1, 0, 0, 0, 0, 0, 0]}),
|
|
("Russ Cochran has been publishing comic art.",
|
|
{"links": {(0, 12): {"Q7381115": 1.0, "Q2146908": 0.0}},
|
|
"entities": [(0, 12, "PERSON")],
|
|
"sent_starts": [1, -1, 0, 0, 0, 0, 0, 0]}),
|
|
("Russ Cochran was a member of University of Kentucky's golf team.",
|
|
{"links": {(0, 12): {"Q7381115": 0.0, "Q2146908": 1.0}},
|
|
"entities": [(0, 12, "PERSON"), (43, 51, "LOC")],
|
|
"sent_starts": [1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]})
|
|
]
|
|
GOLD_entities = ["Q2146908", "Q7381115", "Q7381115", "Q2146908"]
|
|
# fmt: on
|
|
|
|
|
|
def test_overfitting_IO():
|
|
# Simple test to try and quickly overfit the NEL component - ensuring the ML models work correctly
|
|
nlp = English()
|
|
vector_length = 3
|
|
assert "Q2146908" not in nlp.vocab.strings
|
|
|
|
# Convert the texts to docs to make sure we have doc.ents set for the training examples
|
|
train_examples = []
|
|
for text, annotation in TRAIN_DATA:
|
|
doc = nlp(text)
|
|
train_examples.append(Example.from_dict(doc, annotation))
|
|
|
|
def create_kb(vocab):
|
|
# create artificial KB - assign same prior weight to the two russ cochran's
|
|
# Q2146908 (Russ Cochran): American golfer
|
|
# Q7381115 (Russ Cochran): publisher
|
|
mykb = InMemoryLookupKB(vocab, entity_vector_length=vector_length)
|
|
mykb.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3])
|
|
mykb.add_entity(entity="Q7381115", freq=12, entity_vector=[9, 1, -7])
|
|
mykb.add_alias(
|
|
alias="Russ Cochran",
|
|
entities=["Q2146908", "Q7381115"],
|
|
probabilities=[0.5, 0.5],
|
|
)
|
|
return mykb
|
|
|
|
# Create the Entity Linker component and add it to the pipeline
|
|
entity_linker = nlp.add_pipe("entity_linker", last=True)
|
|
assert isinstance(entity_linker, EntityLinker)
|
|
entity_linker.set_kb(create_kb)
|
|
assert "Q2146908" in entity_linker.vocab.strings
|
|
assert "Q2146908" in entity_linker.kb.vocab.strings
|
|
|
|
# train the NEL pipe
|
|
optimizer = nlp.initialize(get_examples=lambda: train_examples)
|
|
assert entity_linker.model.get_dim("nO") == vector_length
|
|
assert entity_linker.model.get_dim("nO") == entity_linker.kb.entity_vector_length
|
|
|
|
for i in range(50):
|
|
losses = {}
|
|
nlp.update(train_examples, sgd=optimizer, losses=losses)
|
|
assert losses["entity_linker"] < 0.001
|
|
|
|
# adding additional components that are required for the entity_linker
|
|
nlp.add_pipe("sentencizer", first=True)
|
|
|
|
# Add a custom component to recognize "Russ Cochran" as an entity for the example training data
|
|
patterns = [
|
|
{"label": "PERSON", "pattern": [{"LOWER": "russ"}, {"LOWER": "cochran"}]}
|
|
]
|
|
ruler = nlp.add_pipe("entity_ruler", before="entity_linker")
|
|
ruler.add_patterns(patterns)
|
|
|
|
# test the trained model
|
|
predictions = []
|
|
for text, annotation in TRAIN_DATA:
|
|
doc = nlp(text)
|
|
for ent in doc.ents:
|
|
predictions.append(ent.kb_id_)
|
|
assert predictions == GOLD_entities
|
|
|
|
# Also test the results are still the same after IO
|
|
with make_tempdir() as tmp_dir:
|
|
nlp.to_disk(tmp_dir)
|
|
nlp2 = util.load_model_from_path(tmp_dir)
|
|
assert nlp2.pipe_names == nlp.pipe_names
|
|
assert "Q2146908" in nlp2.vocab.strings
|
|
entity_linker2 = nlp2.get_pipe("entity_linker")
|
|
assert "Q2146908" in entity_linker2.vocab.strings
|
|
assert "Q2146908" in entity_linker2.kb.vocab.strings
|
|
predictions = []
|
|
for text, annotation in TRAIN_DATA:
|
|
doc2 = nlp2(text)
|
|
for ent in doc2.ents:
|
|
predictions.append(ent.kb_id_)
|
|
assert predictions == GOLD_entities
|
|
|
|
# Make sure that running pipe twice, or comparing to call, always amounts to the same predictions
|
|
texts = [
|
|
"Russ Cochran captured his first major title with his son as caddie.",
|
|
"Russ Cochran his reprints include EC Comics.",
|
|
"Russ Cochran has been publishing comic art.",
|
|
"Russ Cochran was a member of University of Kentucky's golf team.",
|
|
]
|
|
batch_deps_1 = [doc.to_array([ENT_KB_ID]) for doc in nlp.pipe(texts)]
|
|
batch_deps_2 = [doc.to_array([ENT_KB_ID]) for doc in nlp.pipe(texts)]
|
|
no_batch_deps = [doc.to_array([ENT_KB_ID]) for doc in [nlp(text) for text in texts]]
|
|
assert_equal(batch_deps_1, batch_deps_2)
|
|
assert_equal(batch_deps_1, no_batch_deps)
|
|
|
|
|
|
def test_kb_serialization():
|
|
# Test that the KB can be used in a pipeline with a different vocab
|
|
vector_length = 3
|
|
with make_tempdir() as tmp_dir:
|
|
kb_dir = tmp_dir / "kb"
|
|
nlp1 = English()
|
|
assert "Q2146908" not in nlp1.vocab.strings
|
|
mykb = InMemoryLookupKB(nlp1.vocab, entity_vector_length=vector_length)
|
|
mykb.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3])
|
|
mykb.add_alias(alias="Russ Cochran", entities=["Q2146908"], probabilities=[0.8])
|
|
assert "Q2146908" in nlp1.vocab.strings
|
|
mykb.to_disk(kb_dir)
|
|
|
|
nlp2 = English()
|
|
assert "RandomWord" not in nlp2.vocab.strings
|
|
nlp2.vocab.strings.add("RandomWord")
|
|
assert "RandomWord" in nlp2.vocab.strings
|
|
assert "Q2146908" not in nlp2.vocab.strings
|
|
|
|
# Create the Entity Linker component with the KB from file, and check the final vocab
|
|
entity_linker = nlp2.add_pipe("entity_linker", last=True)
|
|
entity_linker.set_kb(load_kb(kb_dir))
|
|
assert "Q2146908" in nlp2.vocab.strings
|
|
assert "RandomWord" in nlp2.vocab.strings
|
|
|
|
|
|
@pytest.mark.xfail(reason="Needs fixing")
|
|
def test_kb_pickle():
|
|
# Test that the KB can be pickled
|
|
nlp = English()
|
|
kb_1 = InMemoryLookupKB(nlp.vocab, entity_vector_length=3)
|
|
kb_1.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3])
|
|
assert not kb_1.contains_alias("Russ Cochran")
|
|
kb_1.add_alias(alias="Russ Cochran", entities=["Q2146908"], probabilities=[0.8])
|
|
assert kb_1.contains_alias("Russ Cochran")
|
|
data = pickle.dumps(kb_1)
|
|
kb_2 = pickle.loads(data)
|
|
assert kb_2.contains_alias("Russ Cochran")
|
|
|
|
|
|
@pytest.mark.xfail(reason="Needs fixing")
|
|
def test_nel_pickle():
|
|
# Test that a pipeline with an EL component can be pickled
|
|
def create_kb(vocab):
|
|
kb = InMemoryLookupKB(vocab, entity_vector_length=3)
|
|
kb.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3])
|
|
kb.add_alias(alias="Russ Cochran", entities=["Q2146908"], probabilities=[0.8])
|
|
return kb
|
|
|
|
nlp_1 = English()
|
|
nlp_1.add_pipe("ner")
|
|
entity_linker_1 = nlp_1.add_pipe("entity_linker", last=True)
|
|
entity_linker_1.set_kb(create_kb)
|
|
assert nlp_1.pipe_names == ["ner", "entity_linker"]
|
|
assert entity_linker_1.kb.contains_alias("Russ Cochran")
|
|
|
|
data = pickle.dumps(nlp_1)
|
|
nlp_2 = pickle.loads(data)
|
|
assert nlp_2.pipe_names == ["ner", "entity_linker"]
|
|
entity_linker_2 = nlp_2.get_pipe("entity_linker")
|
|
assert entity_linker_2.kb.contains_alias("Russ Cochran")
|
|
|
|
|
|
def test_kb_to_bytes():
|
|
# Test that the KB's to_bytes method works correctly
|
|
nlp = English()
|
|
kb_1 = InMemoryLookupKB(nlp.vocab, entity_vector_length=3)
|
|
kb_1.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3])
|
|
kb_1.add_entity(entity="Q66", freq=9, entity_vector=[1, 2, 3])
|
|
kb_1.add_alias(alias="Russ Cochran", entities=["Q2146908"], probabilities=[0.8])
|
|
kb_1.add_alias(alias="Boeing", entities=["Q66"], probabilities=[0.5])
|
|
kb_1.add_alias(
|
|
alias="Randomness", entities=["Q66", "Q2146908"], probabilities=[0.1, 0.2]
|
|
)
|
|
assert kb_1.contains_alias("Russ Cochran")
|
|
kb_bytes = kb_1.to_bytes()
|
|
kb_2 = InMemoryLookupKB(nlp.vocab, entity_vector_length=3)
|
|
assert not kb_2.contains_alias("Russ Cochran")
|
|
kb_2 = kb_2.from_bytes(kb_bytes)
|
|
# check that both KBs are exactly the same
|
|
assert kb_1.get_size_entities() == kb_2.get_size_entities()
|
|
assert kb_1.entity_vector_length == kb_2.entity_vector_length
|
|
assert kb_1.get_entity_strings() == kb_2.get_entity_strings()
|
|
assert kb_1.get_vector("Q2146908") == kb_2.get_vector("Q2146908")
|
|
assert kb_1.get_vector("Q66") == kb_2.get_vector("Q66")
|
|
assert kb_2.contains_alias("Russ Cochran")
|
|
assert kb_1.get_size_aliases() == kb_2.get_size_aliases()
|
|
assert kb_1.get_alias_strings() == kb_2.get_alias_strings()
|
|
assert len(kb_1.get_alias_candidates("Russ Cochran")) == len(
|
|
kb_2.get_alias_candidates("Russ Cochran")
|
|
)
|
|
assert len(kb_1.get_alias_candidates("Randomness")) == len(
|
|
kb_2.get_alias_candidates("Randomness")
|
|
)
|
|
|
|
|
|
def test_nel_to_bytes():
|
|
# Test that a pipeline with an EL component can be converted to bytes
|
|
def create_kb(vocab):
|
|
kb = InMemoryLookupKB(vocab, entity_vector_length=3)
|
|
kb.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3])
|
|
kb.add_alias(alias="Russ Cochran", entities=["Q2146908"], probabilities=[0.8])
|
|
return kb
|
|
|
|
nlp_1 = English()
|
|
nlp_1.add_pipe("ner")
|
|
entity_linker_1 = nlp_1.add_pipe("entity_linker", last=True)
|
|
entity_linker_1.set_kb(create_kb)
|
|
assert entity_linker_1.kb.contains_alias("Russ Cochran")
|
|
assert nlp_1.pipe_names == ["ner", "entity_linker"]
|
|
|
|
nlp_bytes = nlp_1.to_bytes()
|
|
nlp_2 = English()
|
|
nlp_2.add_pipe("ner")
|
|
nlp_2.add_pipe("entity_linker", last=True)
|
|
assert nlp_2.pipe_names == ["ner", "entity_linker"]
|
|
assert not nlp_2.get_pipe("entity_linker").kb.contains_alias("Russ Cochran")
|
|
nlp_2 = nlp_2.from_bytes(nlp_bytes)
|
|
kb_2 = nlp_2.get_pipe("entity_linker").kb
|
|
assert kb_2.contains_alias("Russ Cochran")
|
|
assert kb_2.get_vector("Q2146908") == [6, -4, 3]
|
|
assert_almost_equal(
|
|
kb_2.get_prior_prob(entity="Q2146908", alias="Russ Cochran"), 0.8
|
|
)
|
|
|
|
|
|
def test_scorer_links():
|
|
train_examples = []
|
|
nlp = English()
|
|
ref1 = nlp("Julia lives in London happily.")
|
|
ref1.ents = [
|
|
Span(ref1, 0, 1, label="PERSON", kb_id="Q2"),
|
|
Span(ref1, 3, 4, label="LOC", kb_id="Q3"),
|
|
]
|
|
pred1 = nlp("Julia lives in London happily.")
|
|
pred1.ents = [
|
|
Span(pred1, 0, 1, label="PERSON", kb_id="Q70"),
|
|
Span(pred1, 3, 4, label="LOC", kb_id="Q3"),
|
|
]
|
|
train_examples.append(Example(pred1, ref1))
|
|
|
|
ref2 = nlp("She loves London.")
|
|
ref2.ents = [
|
|
Span(ref2, 0, 1, label="PERSON", kb_id="Q2"),
|
|
Span(ref2, 2, 3, label="LOC", kb_id="Q13"),
|
|
]
|
|
pred2 = nlp("She loves London.")
|
|
pred2.ents = [
|
|
Span(pred2, 0, 1, label="PERSON", kb_id="Q2"),
|
|
Span(pred2, 2, 3, label="LOC", kb_id="NIL"),
|
|
]
|
|
train_examples.append(Example(pred2, ref2))
|
|
|
|
ref3 = nlp("London is great.")
|
|
ref3.ents = [Span(ref3, 0, 1, label="LOC", kb_id="NIL")]
|
|
pred3 = nlp("London is great.")
|
|
pred3.ents = [Span(pred3, 0, 1, label="LOC", kb_id="NIL")]
|
|
train_examples.append(Example(pred3, ref3))
|
|
|
|
scores = Scorer().score_links(train_examples, negative_labels=["NIL"])
|
|
assert scores["nel_f_per_type"]["PERSON"]["p"] == 1 / 2
|
|
assert scores["nel_f_per_type"]["PERSON"]["r"] == 1 / 2
|
|
assert scores["nel_f_per_type"]["LOC"]["p"] == 1 / 1
|
|
assert scores["nel_f_per_type"]["LOC"]["r"] == 1 / 2
|
|
|
|
assert scores["nel_micro_p"] == 2 / 3
|
|
assert scores["nel_micro_r"] == 2 / 4
|
|
|
|
|
|
# fmt: off
|
|
@pytest.mark.parametrize(
|
|
"name,config",
|
|
[
|
|
("entity_linker", {"@architectures": "spacy.EntityLinker.v1", "tok2vec": DEFAULT_TOK2VEC_MODEL}),
|
|
("entity_linker", {"@architectures": "spacy.EntityLinker.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL}),
|
|
],
|
|
)
|
|
# fmt: on
|
|
def test_legacy_architectures(name, config):
|
|
# Ensure that the legacy architectures still work
|
|
vector_length = 3
|
|
nlp = English()
|
|
|
|
train_examples = []
|
|
for text, annotation in TRAIN_DATA:
|
|
doc = nlp.make_doc(text)
|
|
train_examples.append(Example.from_dict(doc, annotation))
|
|
|
|
def create_kb(vocab):
|
|
mykb = InMemoryLookupKB(vocab, entity_vector_length=vector_length)
|
|
mykb.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3])
|
|
mykb.add_entity(entity="Q7381115", freq=12, entity_vector=[9, 1, -7])
|
|
mykb.add_alias(
|
|
alias="Russ Cochran",
|
|
entities=["Q2146908", "Q7381115"],
|
|
probabilities=[0.5, 0.5],
|
|
)
|
|
return mykb
|
|
|
|
entity_linker = nlp.add_pipe(name, config={"model": config})
|
|
if config["@architectures"] == "spacy.EntityLinker.v1":
|
|
assert isinstance(entity_linker, EntityLinker_v1)
|
|
else:
|
|
assert isinstance(entity_linker, EntityLinker)
|
|
entity_linker.set_kb(create_kb)
|
|
optimizer = nlp.initialize(get_examples=lambda: train_examples)
|
|
|
|
for i in range(2):
|
|
losses = {}
|
|
nlp.update(train_examples, sgd=optimizer, losses=losses)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"patterns",
|
|
[
|
|
# perfect case
|
|
[{"label": "CHARACTER", "pattern": "Kirby"}],
|
|
# typo for false negative
|
|
[{"label": "PERSON", "pattern": "Korby"}],
|
|
# random stuff for false positive
|
|
[{"label": "IS", "pattern": "is"}, {"label": "COLOR", "pattern": "pink"}],
|
|
],
|
|
)
|
|
def test_no_gold_ents(patterns):
|
|
# test that annotating components work
|
|
TRAIN_DATA = [
|
|
(
|
|
"Kirby is pink",
|
|
{
|
|
"links": {(0, 5): {"Q613241": 1.0}},
|
|
"entities": [(0, 5, "CHARACTER")],
|
|
"sent_starts": [1, 0, 0],
|
|
},
|
|
)
|
|
]
|
|
nlp = English()
|
|
vector_length = 3
|
|
train_examples = []
|
|
for text, annotation in TRAIN_DATA:
|
|
doc = nlp(text)
|
|
train_examples.append(Example.from_dict(doc, annotation))
|
|
|
|
# Create a ruler to mark entities
|
|
ruler = nlp.add_pipe("entity_ruler")
|
|
ruler.add_patterns(patterns)
|
|
|
|
# Apply ruler to examples. In a real pipeline this would be an annotating component.
|
|
for eg in train_examples:
|
|
eg.predicted = ruler(eg.predicted)
|
|
|
|
# Entity ruler is no longer needed (initialization below wipes out the
|
|
# patterns and causes warnings)
|
|
nlp.remove_pipe("entity_ruler")
|
|
|
|
def create_kb(vocab):
|
|
# create artificial KB
|
|
mykb = InMemoryLookupKB(vocab, entity_vector_length=vector_length)
|
|
mykb.add_entity(entity="Q613241", freq=12, entity_vector=[6, -4, 3])
|
|
mykb.add_alias("Kirby", ["Q613241"], [0.9])
|
|
# Placeholder
|
|
mykb.add_entity(entity="pink", freq=12, entity_vector=[7, 2, -5])
|
|
mykb.add_alias("pink", ["pink"], [0.9])
|
|
return mykb
|
|
|
|
# Create and train the Entity Linker
|
|
entity_linker = nlp.add_pipe(
|
|
"entity_linker", config={"use_gold_ents": False}, last=True
|
|
)
|
|
entity_linker.set_kb(create_kb)
|
|
assert entity_linker.use_gold_ents is False
|
|
|
|
optimizer = nlp.initialize(get_examples=lambda: train_examples)
|
|
for i in range(2):
|
|
losses = {}
|
|
nlp.update(train_examples, sgd=optimizer, losses=losses)
|
|
|
|
# adding additional components that are required for the entity_linker
|
|
nlp.add_pipe("sentencizer", first=True)
|
|
|
|
# this will run the pipeline on the examples and shouldn't crash
|
|
nlp.evaluate(train_examples)
|
|
|
|
|
|
@pytest.mark.issue(9575)
|
|
def test_tokenization_mismatch():
|
|
nlp = English()
|
|
# include a matching entity so that update isn't skipped
|
|
doc1 = Doc(
|
|
nlp.vocab,
|
|
words=["Kirby", "123456"],
|
|
spaces=[True, False],
|
|
ents=["B-CHARACTER", "B-CARDINAL"],
|
|
)
|
|
doc2 = Doc(
|
|
nlp.vocab,
|
|
words=["Kirby", "123", "456"],
|
|
spaces=[True, False, False],
|
|
ents=["B-CHARACTER", "B-CARDINAL", "B-CARDINAL"],
|
|
)
|
|
|
|
eg = Example(doc1, doc2)
|
|
train_examples = [eg]
|
|
vector_length = 3
|
|
|
|
def create_kb(vocab):
|
|
# create placeholder KB
|
|
mykb = InMemoryLookupKB(vocab, entity_vector_length=vector_length)
|
|
mykb.add_entity(entity="Q613241", freq=12, entity_vector=[6, -4, 3])
|
|
mykb.add_alias("Kirby", ["Q613241"], [0.9])
|
|
return mykb
|
|
|
|
entity_linker = nlp.add_pipe("entity_linker", last=True)
|
|
entity_linker.set_kb(create_kb)
|
|
|
|
optimizer = nlp.initialize(get_examples=lambda: train_examples)
|
|
for i in range(2):
|
|
losses = {}
|
|
nlp.update(train_examples, sgd=optimizer, losses=losses)
|
|
|
|
nlp.add_pipe("sentencizer", first=True)
|
|
nlp.evaluate(train_examples)
|
|
|
|
|
|
def test_abstract_kb_instantiation():
|
|
"""Test whether instantiation of abstract KB base class fails."""
|
|
with pytest.raises(TypeError):
|
|
KnowledgeBase(None, 3)
|
|
|
|
|
|
# fmt: off
|
|
@pytest.mark.parametrize(
|
|
"meet_threshold,config",
|
|
[
|
|
(False, {"@architectures": "spacy.EntityLinker.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL}),
|
|
(True, {"@architectures": "spacy.EntityLinker.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL}),
|
|
],
|
|
)
|
|
# fmt: on
|
|
def test_threshold(meet_threshold: bool, config: Dict[str, Any]):
|
|
"""Tests abstention threshold.
|
|
meet_threshold (bool): Whether to configure NEL setup so that confidence threshold is met.
|
|
config (Dict[str, Any]): NEL architecture config.
|
|
"""
|
|
nlp = English()
|
|
nlp.add_pipe("sentencizer")
|
|
text = "Mahler's Symphony No. 8 was beautiful."
|
|
entities = [(0, 6, "PERSON")]
|
|
links = {(0, 6): {"Q7304": 1.0}}
|
|
sent_starts = [1, -1, 0, 0, 0, 0, 0, 0, 0]
|
|
entity_id = "Q7304"
|
|
doc = nlp(text)
|
|
train_examples = [
|
|
Example.from_dict(
|
|
doc, {"entities": entities, "links": links, "sent_starts": sent_starts}
|
|
)
|
|
]
|
|
|
|
def create_kb(vocab):
|
|
# create artificial KB
|
|
mykb = InMemoryLookupKB(vocab, entity_vector_length=3)
|
|
mykb.add_entity(entity=entity_id, freq=12, entity_vector=[6, -4, 3])
|
|
mykb.add_alias(
|
|
alias="Mahler",
|
|
entities=[entity_id],
|
|
probabilities=[1 if meet_threshold else 0.01],
|
|
)
|
|
return mykb
|
|
|
|
# Create the Entity Linker component and add it to the pipeline
|
|
entity_linker = nlp.add_pipe(
|
|
"entity_linker",
|
|
last=True,
|
|
config={"threshold": 0.99, "model": config},
|
|
)
|
|
entity_linker.set_kb(create_kb) # type: ignore
|
|
nlp.initialize(get_examples=lambda: train_examples)
|
|
|
|
# Add a custom rule-based component to mimick NER
|
|
ruler = nlp.add_pipe("entity_ruler", before="entity_linker")
|
|
ruler.add_patterns([{"label": "PERSON", "pattern": [{"LOWER": "mahler"}]}]) # type: ignore
|
|
doc = nlp(text)
|
|
|
|
assert len(doc.ents) == 1
|
|
assert doc.ents[0].kb_id_ == entity_id if meet_threshold else EntityLinker.NIL
|
|
|
|
|
|
def test_save_activations():
|
|
nlp = English()
|
|
vector_length = 3
|
|
assert "Q2146908" not in nlp.vocab.strings
|
|
|
|
# Convert the texts to docs to make sure we have doc.ents set for the training examples
|
|
train_examples = []
|
|
for text, annotation in TRAIN_DATA:
|
|
doc = nlp(text)
|
|
train_examples.append(Example.from_dict(doc, annotation))
|
|
|
|
def create_kb(vocab):
|
|
# create artificial KB - assign same prior weight to the two russ cochran's
|
|
# Q2146908 (Russ Cochran): American golfer
|
|
# Q7381115 (Russ Cochran): publisher
|
|
mykb = InMemoryLookupKB(vocab, entity_vector_length=vector_length)
|
|
mykb.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3])
|
|
mykb.add_entity(entity="Q7381115", freq=12, entity_vector=[9, 1, -7])
|
|
mykb.add_alias(
|
|
alias="Russ Cochran",
|
|
entities=["Q2146908", "Q7381115"],
|
|
probabilities=[0.5, 0.5],
|
|
)
|
|
return mykb
|
|
|
|
# Create the Entity Linker component and add it to the pipeline
|
|
entity_linker = cast(TrainablePipe, nlp.add_pipe("entity_linker", last=True))
|
|
assert isinstance(entity_linker, EntityLinker)
|
|
entity_linker.set_kb(create_kb)
|
|
assert "Q2146908" in entity_linker.vocab.strings
|
|
assert "Q2146908" in entity_linker.kb.vocab.strings
|
|
|
|
# initialize the NEL pipe
|
|
nlp.initialize(get_examples=lambda: train_examples)
|
|
|
|
nO = entity_linker.model.get_dim("nO")
|
|
|
|
nlp.add_pipe("sentencizer", first=True)
|
|
patterns = [
|
|
{"label": "PERSON", "pattern": [{"LOWER": "russ"}, {"LOWER": "cochran"}]},
|
|
{"label": "ORG", "pattern": [{"LOWER": "ec"}, {"LOWER": "comics"}]},
|
|
]
|
|
ruler = nlp.add_pipe("entity_ruler", before="entity_linker")
|
|
ruler.add_patterns(patterns)
|
|
|
|
doc = nlp("Russ Cochran was a publisher")
|
|
assert "entity_linker" not in doc.activations
|
|
|
|
entity_linker.save_activations = True
|
|
doc = nlp("Russ Cochran was a publisher")
|
|
assert set(doc.activations["entity_linker"].keys()) == {"ents", "scores"}
|
|
ents = doc.activations["entity_linker"]["ents"]
|
|
assert isinstance(ents, Ragged)
|
|
assert ents.data.shape == (2, 1)
|
|
assert ents.data.dtype == "uint64"
|
|
assert ents.lengths.shape == (1,)
|
|
scores = doc.activations["entity_linker"]["scores"]
|
|
assert isinstance(scores, Ragged)
|
|
assert scores.data.shape == (2, 1)
|
|
assert scores.data.dtype == "float32"
|
|
assert scores.lengths.shape == (1,)
|