spaCy/spacy/pipeline/pipe.pyx
Madeesh Kannan 0ec9a696e6
Fix config validation failures caused by NVTX pipeline wrappers (#11460)
* Enable Cython<->Python bindings for `Pipe` and `TrainablePipe` methods

* `pipes_with_nvtx_range`: Skip hooking methods whose signature cannot be ascertained

When loading pipelines from a config file, the arguments passed to individual pipeline components is validated by `pydantic` during init. For this, the validation model attempts to parse the function signature of the component's c'tor/entry point so that it can check if all mandatory parameters are present in the config file.

When using the `models_and_pipes_with_nvtx_range` as a `after_pipeline_creation` callback, the methods of all pipeline components get replaced by a NVTX range wrapper **before** the above-mentioned validation takes place. This can be problematic for components that are implemented as Cython extension types - if the extension type is not compiled with Python bindings for its methods, they will have no signatures at runtime. This resulted in `pydantic` matching the *wrapper's* parameters with the those in the config and raising errors.

To avoid this, we now skip applying the wrapper to any (Cython) methods that do not have signatures.
2022-09-12 14:55:41 +02:00

150 lines
5.5 KiB
Cython

# cython: infer_types=True, profile=True, binding=True
from typing import Optional, Tuple, Iterable, Iterator, Callable, Union, Dict
import srsly
import warnings
from ..tokens.doc cimport Doc
from ..training import Example
from ..errors import Errors, Warnings
from ..language import Language
from ..util import raise_error
cdef class Pipe:
"""This class is a base class and not instantiated directly. It provides
an interface for pipeline components to implement.
Trainable pipeline components like the EntityRecognizer or TextCategorizer
should inherit from the subclass 'TrainablePipe'.
DOCS: https://spacy.io/api/pipe
"""
@classmethod
def __init_subclass__(cls, **kwargs):
"""Raise a warning if an inheriting class implements 'begin_training'
(from v2) instead of the new 'initialize' method (from v3)"""
if hasattr(cls, "begin_training"):
warnings.warn(Warnings.W088.format(name=cls.__name__))
def __call__(self, Doc doc) -> Doc:
"""Apply the pipe to one document. The document is modified in place,
and returned. This usually happens under the hood when the nlp object
is called on a text and all components are applied to the Doc.
doc (Doc): The Doc to process.
RETURNS (Doc): The processed Doc.
DOCS: https://spacy.io/api/pipe#call
"""
raise NotImplementedError(Errors.E931.format(parent="Pipe", method="__call__", name=self.name))
def pipe(self, stream: Iterable[Doc], *, batch_size: int=128) -> Iterator[Doc]:
"""Apply the pipe to a stream of documents. This usually happens under
the hood when the nlp object is called on a text and all components are
applied to the Doc.
stream (Iterable[Doc]): A stream of documents.
batch_size (int): The number of documents to buffer.
YIELDS (Doc): Processed documents in order.
DOCS: https://spacy.io/api/pipe#pipe
"""
error_handler = self.get_error_handler()
for doc in stream:
try:
doc = self(doc)
yield doc
except Exception as e:
error_handler(self.name, self, [doc], e)
def initialize(self, get_examples: Callable[[], Iterable[Example]], *, nlp: Language=None):
"""Initialize the pipe. For non-trainable components, this method
is optional. For trainable components, which should inherit
from the subclass TrainablePipe, the provided data examples
should be used to ensure that the internal model is initialized
properly and all input/output dimensions throughout the network are
inferred.
get_examples (Callable[[], Iterable[Example]]): Function that
returns a representative sample of gold-standard Example objects.
nlp (Language): The current nlp object the component is part of.
DOCS: https://spacy.io/api/pipe#initialize
"""
pass
def score(self, examples: Iterable[Example], **kwargs) -> Dict[str, Union[float, Dict[str, float]]]:
"""Score a batch of examples.
examples (Iterable[Example]): The examples to score.
RETURNS (Dict[str, Any]): The scores.
DOCS: https://spacy.io/api/pipe#score
"""
if hasattr(self, "scorer") and self.scorer is not None:
scorer_kwargs = {}
# use default settings from cfg (e.g., threshold)
if hasattr(self, "cfg") and isinstance(self.cfg, dict):
scorer_kwargs.update(self.cfg)
# override self.cfg["labels"] with self.labels
if hasattr(self, "labels"):
scorer_kwargs["labels"] = self.labels
# override with kwargs settings
scorer_kwargs.update(kwargs)
return self.scorer(examples, **scorer_kwargs)
return {}
@property
def is_trainable(self) -> bool:
return False
@property
def labels(self) -> Tuple[str, ...]:
return tuple()
@property
def hide_labels(self) -> bool:
return False
@property
def label_data(self):
"""Optional JSON-serializable data that would be sufficient to recreate
the label set if provided to the `pipe.initialize()` method.
"""
return None
def _require_labels(self) -> None:
"""Raise an error if this component has no labels defined."""
if not self.labels or list(self.labels) == [""]:
raise ValueError(Errors.E143.format(name=self.name))
def set_error_handler(self, error_handler: Callable) -> None:
"""Set an error handler function.
error_handler (Callable[[str, Callable[[Doc], Doc], List[Doc], Exception], None]):
Function that deals with a failing batch of documents. This callable function should take in
the component's name, the component itself, the offending batch of documents, and the exception
that was thrown.
DOCS: https://spacy.io/api/pipe#set_error_handler
"""
self.error_handler = error_handler
def get_error_handler(self) -> Callable:
"""Retrieve the error handler function.
RETURNS (Callable): The error handler, or if it's not set a default function that just reraises.
DOCS: https://spacy.io/api/pipe#get_error_handler
"""
if hasattr(self, "error_handler"):
return self.error_handler
return raise_error
def deserialize_config(path):
if path.exists():
return srsly.read_json(path)
else:
return {}