mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 07:57:35 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			112 lines
		
	
	
		
			3.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			112 lines
		
	
	
		
			3.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| #!/usr/bin/env python
 | |
| # coding: utf8
 | |
| """Example of training spaCy's named entity recognizer, starting off with an
 | |
| existing model or a blank model.
 | |
| 
 | |
| For more details, see the documentation:
 | |
| * Training: https://spacy.io/usage/training
 | |
| * NER: https://spacy.io/usage/linguistic-features#named-entities
 | |
| 
 | |
| Compatible with: spaCy v2.0.0+
 | |
| Last tested with: v2.1.0
 | |
| """
 | |
| from __future__ import unicode_literals, print_function
 | |
| 
 | |
| import plac
 | |
| import random
 | |
| from pathlib import Path
 | |
| import spacy
 | |
| from spacy.util import minibatch, compounding
 | |
| 
 | |
| 
 | |
| # training data
 | |
| TRAIN_DATA = [
 | |
|     ("Who is Shaka Khan?", {"entities": [(7, 17, "PERSON")]}),
 | |
|     ("I like London and Berlin.", {"entities": [(7, 13, "LOC"), (18, 24, "LOC")]}),
 | |
| ]
 | |
| 
 | |
| 
 | |
| @plac.annotations(
 | |
|     model=("Model name. Defaults to blank 'en' model.", "option", "m", str),
 | |
|     output_dir=("Optional output directory", "option", "o", Path),
 | |
|     n_iter=("Number of training iterations", "option", "n", int),
 | |
| )
 | |
| def main(model=None, output_dir=None, n_iter=100):
 | |
|     """Load the model, set up the pipeline and train the entity recognizer."""
 | |
|     if model is not None:
 | |
|         nlp = spacy.load(model)  # load existing spaCy model
 | |
|         print("Loaded model '%s'" % model)
 | |
|     else:
 | |
|         nlp = spacy.blank("en")  # create blank Language class
 | |
|         print("Created blank 'en' model")
 | |
| 
 | |
|     # create the built-in pipeline components and add them to the pipeline
 | |
|     # nlp.create_pipe works for built-ins that are registered with spaCy
 | |
|     if "ner" not in nlp.pipe_names:
 | |
|         ner = nlp.create_pipe("ner")
 | |
|         nlp.add_pipe(ner, last=True)
 | |
|     # otherwise, get it so we can add labels
 | |
|     else:
 | |
|         ner = nlp.get_pipe("ner")
 | |
| 
 | |
|     # add labels
 | |
|     for _, annotations in TRAIN_DATA:
 | |
|         for ent in annotations.get("entities"):
 | |
|             ner.add_label(ent[2])
 | |
| 
 | |
|     # get names of other pipes to disable them during training
 | |
|     other_pipes = [pipe for pipe in nlp.pipe_names if pipe != "ner"]
 | |
|     with nlp.disable_pipes(*other_pipes):  # only train NER
 | |
|         # reset and initialize the weights randomly – but only if we're
 | |
|         # training a new model
 | |
|         if model is None:
 | |
|             nlp.begin_training()
 | |
|         for itn in range(n_iter):
 | |
|             random.shuffle(TRAIN_DATA)
 | |
|             losses = {}
 | |
|             # batch up the examples using spaCy's minibatch
 | |
|             batches = minibatch(TRAIN_DATA, size=compounding(4.0, 32.0, 1.001))
 | |
|             for batch in batches:
 | |
|                 texts, annotations = zip(*batch)
 | |
|                 nlp.update(
 | |
|                     texts,  # batch of texts
 | |
|                     annotations,  # batch of annotations
 | |
|                     drop=0.5,  # dropout - make it harder to memorise data
 | |
|                     losses=losses,
 | |
|                 )
 | |
|             print("Losses", losses)
 | |
| 
 | |
|     # test the trained model
 | |
|     for text, _ in TRAIN_DATA:
 | |
|         doc = nlp(text)
 | |
|         print("Entities", [(ent.text, ent.label_) for ent in doc.ents])
 | |
|         print("Tokens", [(t.text, t.ent_type_, t.ent_iob) for t in doc])
 | |
| 
 | |
|     # save model to output directory
 | |
|     if output_dir is not None:
 | |
|         output_dir = Path(output_dir)
 | |
|         if not output_dir.exists():
 | |
|             output_dir.mkdir()
 | |
|         nlp.to_disk(output_dir)
 | |
|         print("Saved model to", output_dir)
 | |
| 
 | |
|         # test the saved model
 | |
|         print("Loading from", output_dir)
 | |
|         nlp2 = spacy.load(output_dir)
 | |
|         for text, _ in TRAIN_DATA:
 | |
|             doc = nlp2(text)
 | |
|             print("Entities", [(ent.text, ent.label_) for ent in doc.ents])
 | |
|             print("Tokens", [(t.text, t.ent_type_, t.ent_iob) for t in doc])
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     plac.call(main)
 | |
| 
 | |
|     # Expected output:
 | |
|     # Entities [('Shaka Khan', 'PERSON')]
 | |
|     # Tokens [('Who', '', 2), ('is', '', 2), ('Shaka', 'PERSON', 3),
 | |
|     # ('Khan', 'PERSON', 1), ('?', '', 2)]
 | |
|     # Entities [('London', 'LOC'), ('Berlin', 'LOC')]
 | |
|     # Tokens [('I', '', 2), ('like', '', 2), ('London', 'LOC', 3),
 | |
|     # ('and', '', 2), ('Berlin', 'LOC', 3), ('.', '', 2)]
 |