mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	* Add work in progress * Update analysis helpers and component decorator * Fix porting of docstrings for Python 2 * Fix docstring stuff on Python 2 * Support meta factories when loading model * Put auto pipeline analysis behind flag for now * Analyse pipes on remove_pipe and replace_pipe * Move analysis to root for now Try to find a better place for it, but it needs to go for now to avoid circular imports * Simplify decorator Don't return a wrapped class and instead just write to the object * Update existing components and factories * Add condition in factory for classes vs. functions * Add missing from_nlp classmethods * Add "retokenizes" to printed overview * Update assigns/requires declarations of builtins * Only return data if no_print is enabled * Use multiline table for overview * Don't support Span * Rewrite errors/warnings and move them to spacy.errors
		
			
				
	
	
		
			100 lines
		
	
	
		
			3.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			100 lines
		
	
	
		
			3.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# coding: utf8
 | 
						|
from __future__ import unicode_literals
 | 
						|
 | 
						|
from thinc.t2v import Pooling, max_pool, mean_pool
 | 
						|
from thinc.neural._classes.difference import Siamese, CauchySimilarity
 | 
						|
 | 
						|
from .pipes import Pipe
 | 
						|
from ..language import component
 | 
						|
from .._ml import link_vectors_to_models
 | 
						|
 | 
						|
 | 
						|
@component("sentencizer_hook", assigns=["doc.user_hooks"])
 | 
						|
class SentenceSegmenter(object):
 | 
						|
    """A simple spaCy hook, to allow custom sentence boundary detection logic
 | 
						|
    (that doesn't require the dependency parse). To change the sentence
 | 
						|
    boundary detection strategy, pass a generator function `strategy` on
 | 
						|
    initialization, or assign a new strategy to the .strategy attribute.
 | 
						|
    Sentence detection strategies should be generators that take `Doc` objects
 | 
						|
    and yield `Span` objects for each sentence.
 | 
						|
    """
 | 
						|
 | 
						|
    def __init__(self, vocab, strategy=None):
 | 
						|
        self.vocab = vocab
 | 
						|
        if strategy is None or strategy == "on_punct":
 | 
						|
            strategy = self.split_on_punct
 | 
						|
        self.strategy = strategy
 | 
						|
 | 
						|
    def __call__(self, doc):
 | 
						|
        doc.user_hooks["sents"] = self.strategy
 | 
						|
        return doc
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def split_on_punct(doc):
 | 
						|
        start = 0
 | 
						|
        seen_period = False
 | 
						|
        for i, token in enumerate(doc):
 | 
						|
            if seen_period and not token.is_punct:
 | 
						|
                yield doc[start : token.i]
 | 
						|
                start = token.i
 | 
						|
                seen_period = False
 | 
						|
            elif token.text in [".", "!", "?"]:
 | 
						|
                seen_period = True
 | 
						|
        if start < len(doc):
 | 
						|
            yield doc[start : len(doc)]
 | 
						|
 | 
						|
 | 
						|
@component("similarity", assigns=["doc.user_hooks"])
 | 
						|
class SimilarityHook(Pipe):
 | 
						|
    """
 | 
						|
    Experimental: A pipeline component to install a hook for supervised
 | 
						|
    similarity into `Doc` objects. Requires a `Tensorizer` to pre-process
 | 
						|
    documents. The similarity model can be any object obeying the Thinc `Model`
 | 
						|
    interface. By default, the model concatenates the elementwise mean and
 | 
						|
    elementwise max of the two tensors, and compares them using the
 | 
						|
    Cauchy-like similarity function from Chen (2013):
 | 
						|
 | 
						|
        >>> similarity = 1. / (1. + (W * (vec1-vec2)**2).sum())
 | 
						|
 | 
						|
    Where W is a vector of dimension weights, initialized to 1.
 | 
						|
    """
 | 
						|
 | 
						|
    def __init__(self, vocab, model=True, **cfg):
 | 
						|
        self.vocab = vocab
 | 
						|
        self.model = model
 | 
						|
        self.cfg = dict(cfg)
 | 
						|
 | 
						|
    @classmethod
 | 
						|
    def Model(cls, length):
 | 
						|
        return Siamese(Pooling(max_pool, mean_pool), CauchySimilarity(length))
 | 
						|
 | 
						|
    def __call__(self, doc):
 | 
						|
        """Install similarity hook"""
 | 
						|
        doc.user_hooks["similarity"] = self.predict
 | 
						|
        return doc
 | 
						|
 | 
						|
    def pipe(self, docs, **kwargs):
 | 
						|
        for doc in docs:
 | 
						|
            yield self(doc)
 | 
						|
 | 
						|
    def predict(self, doc1, doc2):
 | 
						|
        self.require_model()
 | 
						|
        return self.model.predict([(doc1, doc2)])
 | 
						|
 | 
						|
    def update(self, doc1_doc2, golds, sgd=None, drop=0.0):
 | 
						|
        self.require_model()
 | 
						|
        sims, bp_sims = self.model.begin_update(doc1_doc2, drop=drop)
 | 
						|
 | 
						|
    def begin_training(self, _=tuple(), pipeline=None, sgd=None, **kwargs):
 | 
						|
        """Allocate model, using width from tensorizer in pipeline.
 | 
						|
 | 
						|
        gold_tuples (iterable): Gold-standard training data.
 | 
						|
        pipeline (list): The pipeline the model is part of.
 | 
						|
        """
 | 
						|
        if self.model is True:
 | 
						|
            self.model = self.Model(pipeline[0].model.nO)
 | 
						|
            link_vectors_to_models(self.vocab)
 | 
						|
        if sgd is None:
 | 
						|
            sgd = self.create_optimizer()
 | 
						|
        return sgd
 |