spaCy/spacy/pipeline/span_finder.py
2023-06-26 11:41:03 +02:00

336 lines
12 KiB
Python

from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple
from thinc.api import Config, Model, Optimizer, set_dropout_rate
from thinc.types import Floats2d
from ..errors import Errors
from ..language import Language
from ..scorer import Scorer
from ..tokens import Doc, Span
from ..training import Example
from ..util import registry
from .spancat import DEFAULT_SPANS_KEY
from .trainable_pipe import TrainablePipe
span_finder_default_config = """
[model]
@architectures = "spacy.SpanFinder.v1"
[model.scorer]
@layers = "spacy.LinearLogistic.v1"
nO = 2
[model.tok2vec]
@architectures = "spacy.Tok2Vec.v2"
[model.tok2vec.embed]
@architectures = "spacy.MultiHashEmbed.v2"
width = 96
rows = [5000, 1000, 2500, 1000]
attrs = ["NORM", "PREFIX", "SUFFIX", "SHAPE"]
include_static_vectors = false
[model.tok2vec.encode]
@architectures = "spacy.MaxoutWindowEncoder.v2"
width = ${model.tok2vec.embed.width}
window_size = 1
maxout_pieces = 3
depth = 4
"""
DEFAULT_SPAN_FINDER_MODEL = Config().from_str(span_finder_default_config)["model"]
@Language.factory(
"span_finder",
assigns=["doc.spans"],
default_config={
"threshold": 0.5,
"model": DEFAULT_SPAN_FINDER_MODEL,
"spans_key": DEFAULT_SPANS_KEY,
"max_length": None,
"min_length": None,
"scorer": {"@scorers": "spacy.span_finder_scorer.v1"},
},
default_score_weights={
f"span_finder_{DEFAULT_SPANS_KEY}_f": 1.0,
f"span_finder_{DEFAULT_SPANS_KEY}_p": 0.0,
f"span_finder_{DEFAULT_SPANS_KEY}_r": 0.0,
},
)
def make_span_finder(
nlp: Language,
name: str,
model: Model[Iterable[Doc], Floats2d],
spans_key: str,
threshold: float,
max_length: Optional[int],
min_length: Optional[int],
scorer: Optional[Callable],
) -> "SpanFinder":
"""Create a SpanFinder component. The component predicts whether a token is
the start or the end of a potential span.
model (Model[List[Doc], Floats2d]): A model instance that
is given a list of documents and predicts a probability for each token.
spans_key (str): Key of the doc.spans dict to save the spans under. During
initialization and training, the component will look for spans on the
reference document under the same key.
threshold (float): Minimum probability to consider a prediction positive.
max_length (Optional[int]): Maximum length of the produced spans, defaults
to None meaning unlimited length.
min_length (Optional[int]): Minimum length of the produced spans, defaults
to None meaning shortest span length is 1.
scorer (Optional[Callable]): The scoring method. Defaults to
Scorer.score_spans for the Doc.spans[spans_key] with overlapping
spans allowed.
"""
return SpanFinder(
nlp,
model=model,
threshold=threshold,
name=name,
scorer=scorer,
max_length=max_length,
min_length=min_length,
spans_key=spans_key,
)
@registry.scorers("spacy.span_finder_scorer.v1")
def make_span_finder_scorer():
return span_finder_score
def span_finder_score(examples: Iterable[Example], **kwargs) -> Dict[str, Any]:
kwargs = dict(kwargs)
attr_prefix = "span_finder_"
key = kwargs["spans_key"]
kwargs.setdefault("attr", f"{attr_prefix}{key}")
kwargs.setdefault(
"getter", lambda doc, key: doc.spans.get(key[len(attr_prefix) :], [])
)
kwargs.setdefault("has_annotation", lambda doc: key in doc.spans)
kwargs.setdefault("allow_overlap", True)
kwargs.setdefault("labeled", False)
scores = Scorer.score_spans(examples, **kwargs)
scores.pop(f"{kwargs['attr']}_per_type", None)
return scores
def _char_indices(span: Span) -> Tuple[int, int]:
start = span[0].idx
end = span[-1].idx + len(span[-1])
return start, end
class SpanFinder(TrainablePipe):
"""Pipeline that learns span boundaries.
DOCS: https://spacy.io/api/spanfinder
"""
def __init__(
self,
nlp: Language,
model: Model[Iterable[Doc], Floats2d],
name: str = "span_finder",
*,
spans_key: str = DEFAULT_SPANS_KEY,
threshold: float = 0.5,
max_length: Optional[int] = None,
min_length: Optional[int] = None,
scorer: Optional[Callable] = span_finder_score,
) -> None:
"""Initialize the span finder.
model (thinc.api.Model): The Thinc Model powering the pipeline
component.
name (str): The component instance name, used to add entries to the
losses during training.
threshold (float): Minimum probability to consider a prediction
positive.
scorer (Optional[Callable]): The scoring method.
spans_key (str): Key of the doc.spans dict to save the spans under.
During initialization and training, the component will look for
spans on the reference document under the same key.
max_length (Optional[int]): Maximum length of the produced spans,
defaults to None meaning unlimited length.
min_length (Optional[int]): Minimum length of the produced spans,
defaults to None meaning shortest span length is 1.
DOCS: https://spacy.io/api/spanfinder#init
"""
self.vocab = nlp.vocab
if (max_length is not None and max_length < 1) or (
min_length is not None and min_length < 1
):
raise ValueError(
Errors.E1053.format(min_length=min_length, max_length=max_length)
)
self.model = model
self.name = name
self.scorer = scorer
self.cfg: Dict[str, Any] = {
"min_length": min_length,
"max_length": max_length,
"threshold": threshold,
"spans_key": spans_key,
}
def predict(self, docs: Iterable[Doc]):
"""Apply the pipeline's model to a batch of docs, without modifying
them.
docs (Iterable[Doc]): The documents to predict.
RETURNS: The models prediction for each document.
DOCS: https://spacy.io/api/spanfinder#predict
"""
scores = self.model.predict(docs)
return scores
def set_annotations(self, docs: Iterable[Doc], scores: Floats2d) -> None:
"""Modify a batch of Doc objects, using pre-computed scores.
docs (Iterable[Doc]): The documents to modify.
scores: The scores to set, produced by SpanFinder predict method.
DOCS: https://spacy.io/api/spanfinder#set_annotations
"""
offset = 0
for i, doc in enumerate(docs):
doc.spans[self.cfg["spans_key"]] = []
starts = []
ends = []
doc_scores = scores[offset : offset + len(doc)]
for token, token_score in zip(doc, doc_scores):
if token_score[0] >= self.cfg["threshold"]:
starts.append(token.i)
if token_score[1] >= self.cfg["threshold"]:
ends.append(token.i)
for start in starts:
for end in ends:
span_length = end + 1 - start
if span_length < 1:
continue
if (
self.cfg["min_length"] is None
or self.cfg["min_length"] <= span_length
) and (
self.cfg["max_length"] is None
or span_length <= self.cfg["max_length"]
):
doc.spans[self.cfg["spans_key"]].append(doc[start : end + 1])
offset += len(doc)
def update(
self,
examples: Iterable[Example],
*,
drop: float = 0.0,
sgd: Optional[Optimizer] = None,
losses: Optional[Dict[str, float]] = None,
) -> Dict[str, float]:
"""Learn from a batch of documents and gold-standard information,
updating the pipe's model. Delegates to predict and get_loss.
examples (Iterable[Example]): A batch of Example objects.
drop (float): The dropout rate.
sgd (Optional[thinc.api.Optimizer]): The optimizer.
losses (Optional[Dict[str, float]]): Optional record of the loss during
training. Updated using the component name as the key.
RETURNS (Dict[str, float]): The updated losses dictionary.
DOCS: https://spacy.io/api/spanfinder#update
"""
if losses is None:
losses = {}
losses.setdefault(self.name, 0.0)
predicted = [eg.predicted for eg in examples]
set_dropout_rate(self.model, drop)
scores, backprop_scores = self.model.begin_update(predicted)
loss, d_scores = self.get_loss(examples, scores)
backprop_scores(d_scores)
if sgd is not None:
self.finish_update(sgd)
losses[self.name] += loss
return losses
def get_loss(self, examples, scores) -> Tuple[float, Floats2d]:
"""Find the loss and gradient of loss for the batch of documents and
their predicted scores.
examples (Iterable[Examples]): The batch of examples.
scores: Scores representing the model's predictions.
RETURNS (Tuple[float, Floats2d]): The loss and the gradient.
DOCS: https://spacy.io/api/spanfinder#get_loss
"""
truths, masks = self._get_aligned_truth_scores(examples, self.model.ops)
d_scores = scores - self.model.ops.asarray2f(truths)
d_scores *= masks
loss = float((d_scores**2).sum())
return loss, d_scores
def _get_aligned_truth_scores(self, examples, ops) -> Tuple[Floats2d, Floats2d]:
"""Align scores of the predictions to the references for calculating
the loss.
"""
truths = []
masks = []
for eg in examples:
if eg.x.text != eg.y.text:
raise ValueError(Errors.E1054.format(component="span_finder"))
n_tokens = len(eg.predicted)
truth = ops.xp.zeros((n_tokens, 2), dtype="float32")
mask = ops.xp.ones((n_tokens, 2), dtype="float32")
if self.cfg["spans_key"] in eg.reference.spans:
for span in eg.reference.spans[self.cfg["spans_key"]]:
ref_start_char, ref_end_char = _char_indices(span)
pred_span = eg.predicted.char_span(
ref_start_char, ref_end_char, alignment_mode="expand"
)
pred_start_char, pred_end_char = _char_indices(pred_span)
start_match = pred_start_char == ref_start_char
end_match = pred_end_char == ref_end_char
if start_match:
truth[pred_span[0].i, 0] = 1
else:
mask[pred_span[0].i, 0] = 0
if end_match:
truth[pred_span[-1].i, 1] = 1
else:
mask[pred_span[-1].i, 1] = 0
truths.append(truth)
masks.append(mask)
truths = ops.xp.concatenate(truths, axis=0)
masks = ops.xp.concatenate(masks, axis=0)
return truths, masks
def initialize(
self,
get_examples: Callable[[], Iterable[Example]],
*,
nlp: Optional[Language] = None,
) -> None:
"""Initialize the pipe for training, using a representative set
of data examples.
get_examples (Callable[[], Iterable[Example]]): Function that
returns a representative sample of gold-standard Example objects.
nlp (Optional[Language]): The current nlp object the component is part
of.
DOCS: https://spacy.io/api/spanfinder#initialize
"""
subbatch: List[Example] = []
for eg in get_examples():
if len(subbatch) < 10:
subbatch.append(eg)
if subbatch:
docs = [eg.reference for eg in subbatch]
Y, _ = self._get_aligned_truth_scores(subbatch, self.model.ops)
self.model.initialize(X=docs, Y=Y)
else:
self.model.initialize()