mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	* Tagger: use unnormalized probabilities for inference Using unnormalized softmax avoids use of the relatively expensive exp function, which can significantly speed up non-transformer models (e.g. I got a speedup of 27% on a German tagging + parsing pipeline). * Add spacy.Tagger.v2 with configurable normalization Normalization of probabilities is disabled by default to improve performance. * Update documentation, models, and tests to spacy.Tagger.v2 * Move Tagger.v1 to spacy-legacy * docs/architectures: run prettier * Unnormalized softmax is now a Softmax_v2 option * Require thinc 8.0.14 and spacy-legacy 3.0.9
		
			
				
	
	
		
			435 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			435 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import pytest
 | 
						|
from spacy.ml.models.tok2vec import build_Tok2Vec_model
 | 
						|
from spacy.ml.models.tok2vec import MultiHashEmbed, CharacterEmbed
 | 
						|
from spacy.ml.models.tok2vec import MishWindowEncoder, MaxoutWindowEncoder
 | 
						|
from spacy.pipeline.tok2vec import Tok2Vec, Tok2VecListener
 | 
						|
from spacy.vocab import Vocab
 | 
						|
from spacy.tokens import Doc
 | 
						|
from spacy.training import Example
 | 
						|
from spacy import util
 | 
						|
from spacy.lang.en import English
 | 
						|
from thinc.api import Config, get_current_ops
 | 
						|
from numpy.testing import assert_array_equal
 | 
						|
 | 
						|
from ..util import get_batch, make_tempdir, add_vecs_to_vocab
 | 
						|
 | 
						|
 | 
						|
def test_empty_doc():
 | 
						|
    width = 128
 | 
						|
    embed_size = 2000
 | 
						|
    vocab = Vocab()
 | 
						|
    doc = Doc(vocab, words=[])
 | 
						|
    tok2vec = build_Tok2Vec_model(
 | 
						|
        MultiHashEmbed(
 | 
						|
            width=width,
 | 
						|
            rows=[embed_size, embed_size, embed_size, embed_size],
 | 
						|
            include_static_vectors=False,
 | 
						|
            attrs=["NORM", "PREFIX", "SUFFIX", "SHAPE"],
 | 
						|
        ),
 | 
						|
        MaxoutWindowEncoder(width=width, depth=4, window_size=1, maxout_pieces=3),
 | 
						|
    )
 | 
						|
    tok2vec.initialize()
 | 
						|
    vectors, backprop = tok2vec.begin_update([doc])
 | 
						|
    assert len(vectors) == 1
 | 
						|
    assert vectors[0].shape == (0, width)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "batch_size,width,embed_size", [[1, 128, 2000], [2, 128, 2000], [3, 8, 63]]
 | 
						|
)
 | 
						|
def test_tok2vec_batch_sizes(batch_size, width, embed_size):
 | 
						|
    batch = get_batch(batch_size)
 | 
						|
    tok2vec = build_Tok2Vec_model(
 | 
						|
        MultiHashEmbed(
 | 
						|
            width=width,
 | 
						|
            rows=[embed_size] * 4,
 | 
						|
            include_static_vectors=False,
 | 
						|
            attrs=["NORM", "PREFIX", "SUFFIX", "SHAPE"],
 | 
						|
        ),
 | 
						|
        MaxoutWindowEncoder(width=width, depth=4, window_size=1, maxout_pieces=3),
 | 
						|
    )
 | 
						|
    tok2vec.initialize()
 | 
						|
    vectors, backprop = tok2vec.begin_update(batch)
 | 
						|
    assert len(vectors) == len(batch)
 | 
						|
    for doc_vec, doc in zip(vectors, batch):
 | 
						|
        assert doc_vec.shape == (len(doc), width)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "width,embed_arch,embed_config,encode_arch,encode_config",
 | 
						|
    # fmt: off
 | 
						|
    [
 | 
						|
        (8, MultiHashEmbed, {"rows": [100, 100], "attrs": ["SHAPE", "LOWER"], "include_static_vectors": False}, MaxoutWindowEncoder, {"window_size": 1, "maxout_pieces": 3, "depth": 2}),
 | 
						|
        (8, MultiHashEmbed, {"rows": [100, 20], "attrs": ["ORTH", "PREFIX"], "include_static_vectors": False}, MishWindowEncoder, {"window_size": 1, "depth": 6}),
 | 
						|
        (8, CharacterEmbed, {"rows": 100, "nM": 64, "nC": 8, "include_static_vectors": False}, MaxoutWindowEncoder, {"window_size": 1, "maxout_pieces": 3, "depth": 3}),
 | 
						|
        (8, CharacterEmbed, {"rows": 100, "nM": 16, "nC": 2, "include_static_vectors": False}, MishWindowEncoder, {"window_size": 1, "depth": 3}),
 | 
						|
    ],
 | 
						|
    # fmt: on
 | 
						|
)
 | 
						|
def test_tok2vec_configs(width, embed_arch, embed_config, encode_arch, encode_config):
 | 
						|
    embed_config["width"] = width
 | 
						|
    encode_config["width"] = width
 | 
						|
    docs = get_batch(3)
 | 
						|
    tok2vec = build_Tok2Vec_model(
 | 
						|
        embed_arch(**embed_config), encode_arch(**encode_config)
 | 
						|
    )
 | 
						|
    tok2vec.initialize(docs)
 | 
						|
    vectors, backprop = tok2vec.begin_update(docs)
 | 
						|
    assert len(vectors) == len(docs)
 | 
						|
    assert vectors[0].shape == (len(docs[0]), width)
 | 
						|
    backprop(vectors)
 | 
						|
 | 
						|
 | 
						|
def test_init_tok2vec():
 | 
						|
    # Simple test to initialize the default tok2vec
 | 
						|
    nlp = English()
 | 
						|
    tok2vec = nlp.add_pipe("tok2vec")
 | 
						|
    assert tok2vec.listeners == []
 | 
						|
    nlp.initialize()
 | 
						|
    assert tok2vec.model.get_dim("nO")
 | 
						|
 | 
						|
 | 
						|
cfg_string = """
 | 
						|
    [nlp]
 | 
						|
    lang = "en"
 | 
						|
    pipeline = ["tok2vec","tagger"]
 | 
						|
 | 
						|
    [components]
 | 
						|
 | 
						|
    [components.tagger]
 | 
						|
    factory = "tagger"
 | 
						|
 | 
						|
    [components.tagger.model]
 | 
						|
    @architectures = "spacy.Tagger.v2"
 | 
						|
    nO = null
 | 
						|
 | 
						|
    [components.tagger.model.tok2vec]
 | 
						|
    @architectures = "spacy.Tok2VecListener.v1"
 | 
						|
    width = ${components.tok2vec.model.encode.width}
 | 
						|
 | 
						|
    [components.tok2vec]
 | 
						|
    factory = "tok2vec"
 | 
						|
 | 
						|
    [components.tok2vec.model]
 | 
						|
    @architectures = "spacy.Tok2Vec.v2"
 | 
						|
 | 
						|
    [components.tok2vec.model.embed]
 | 
						|
    @architectures = "spacy.MultiHashEmbed.v1"
 | 
						|
    width = ${components.tok2vec.model.encode.width}
 | 
						|
    rows = [2000, 1000, 1000, 1000]
 | 
						|
    attrs = ["NORM", "PREFIX", "SUFFIX", "SHAPE"]
 | 
						|
    include_static_vectors = false
 | 
						|
 | 
						|
    [components.tok2vec.model.encode]
 | 
						|
    @architectures = "spacy.MaxoutWindowEncoder.v2"
 | 
						|
    width = 96
 | 
						|
    depth = 4
 | 
						|
    window_size = 1
 | 
						|
    maxout_pieces = 3
 | 
						|
    """
 | 
						|
 | 
						|
TRAIN_DATA = [
 | 
						|
    (
 | 
						|
        "I like green eggs",
 | 
						|
        {"tags": ["N", "V", "J", "N"], "cats": {"preference": 1.0, "imperative": 0.0}},
 | 
						|
    ),
 | 
						|
    (
 | 
						|
        "Eat blue ham",
 | 
						|
        {"tags": ["V", "J", "N"], "cats": {"preference": 0.0, "imperative": 1.0}},
 | 
						|
    ),
 | 
						|
]
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("with_vectors", (False, True))
 | 
						|
def test_tok2vec_listener(with_vectors):
 | 
						|
    orig_config = Config().from_str(cfg_string)
 | 
						|
    orig_config["components"]["tok2vec"]["model"]["embed"][
 | 
						|
        "include_static_vectors"
 | 
						|
    ] = with_vectors
 | 
						|
    nlp = util.load_model_from_config(orig_config, auto_fill=True, validate=True)
 | 
						|
 | 
						|
    if with_vectors:
 | 
						|
        ops = get_current_ops()
 | 
						|
        vectors = [
 | 
						|
            ("apple", ops.asarray([1, 2, 3])),
 | 
						|
            ("orange", ops.asarray([-1, -2, -3])),
 | 
						|
            ("and", ops.asarray([-1, -1, -1])),
 | 
						|
            ("juice", ops.asarray([5, 5, 10])),
 | 
						|
            ("pie", ops.asarray([7, 6.3, 8.9])),
 | 
						|
        ]
 | 
						|
        add_vecs_to_vocab(nlp.vocab, vectors)
 | 
						|
 | 
						|
    assert nlp.pipe_names == ["tok2vec", "tagger"]
 | 
						|
    tagger = nlp.get_pipe("tagger")
 | 
						|
    tok2vec = nlp.get_pipe("tok2vec")
 | 
						|
    tagger_tok2vec = tagger.model.get_ref("tok2vec")
 | 
						|
    assert isinstance(tok2vec, Tok2Vec)
 | 
						|
    assert isinstance(tagger_tok2vec, Tok2VecListener)
 | 
						|
    train_examples = []
 | 
						|
    for t in TRAIN_DATA:
 | 
						|
        train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
 | 
						|
        for tag in t[1]["tags"]:
 | 
						|
            tagger.add_label(tag)
 | 
						|
 | 
						|
    # Check that the Tok2Vec component finds it listeners
 | 
						|
    assert tok2vec.listeners == []
 | 
						|
    optimizer = nlp.initialize(lambda: train_examples)
 | 
						|
    assert tok2vec.listeners == [tagger_tok2vec]
 | 
						|
 | 
						|
    for i in range(5):
 | 
						|
        losses = {}
 | 
						|
        nlp.update(train_examples, sgd=optimizer, losses=losses)
 | 
						|
 | 
						|
    doc = nlp("Running the pipeline as a whole.")
 | 
						|
    doc_tensor = tagger_tok2vec.predict([doc])[0]
 | 
						|
    ops = get_current_ops()
 | 
						|
    assert_array_equal(ops.to_numpy(doc.tensor), ops.to_numpy(doc_tensor))
 | 
						|
 | 
						|
    # test with empty doc
 | 
						|
    doc = nlp("")
 | 
						|
 | 
						|
    # TODO: should this warn or error?
 | 
						|
    nlp.select_pipes(disable="tok2vec")
 | 
						|
    assert nlp.pipe_names == ["tagger"]
 | 
						|
    nlp("Running the pipeline with the Tok2Vec component disabled.")
 | 
						|
 | 
						|
 | 
						|
def test_tok2vec_listener_callback():
 | 
						|
    orig_config = Config().from_str(cfg_string)
 | 
						|
    nlp = util.load_model_from_config(orig_config, auto_fill=True, validate=True)
 | 
						|
    assert nlp.pipe_names == ["tok2vec", "tagger"]
 | 
						|
    tagger = nlp.get_pipe("tagger")
 | 
						|
    tok2vec = nlp.get_pipe("tok2vec")
 | 
						|
    nlp._link_components()
 | 
						|
    docs = [nlp.make_doc("A random sentence")]
 | 
						|
    tok2vec.model.initialize(X=docs)
 | 
						|
    gold_array = [[1.0 for tag in ["V", "Z"]] for word in docs]
 | 
						|
    label_sample = [tagger.model.ops.asarray(gold_array, dtype="float32")]
 | 
						|
    tagger.model.initialize(X=docs, Y=label_sample)
 | 
						|
    docs = [nlp.make_doc("Another entirely random sentence")]
 | 
						|
    tok2vec.update([Example.from_dict(x, {}) for x in docs])
 | 
						|
    Y, get_dX = tagger.model.begin_update(docs)
 | 
						|
    # assure that the backprop call works (and doesn't hit a 'None' callback)
 | 
						|
    assert get_dX(Y) is not None
 | 
						|
 | 
						|
 | 
						|
def test_replace_listeners():
 | 
						|
    orig_config = Config().from_str(cfg_string)
 | 
						|
    nlp = util.load_model_from_config(orig_config, auto_fill=True, validate=True)
 | 
						|
    examples = [Example.from_dict(nlp.make_doc("x y"), {"tags": ["V", "Z"]})]
 | 
						|
    nlp.initialize(lambda: examples)
 | 
						|
    tok2vec = nlp.get_pipe("tok2vec")
 | 
						|
    tagger = nlp.get_pipe("tagger")
 | 
						|
    assert isinstance(tagger.model.layers[0], Tok2VecListener)
 | 
						|
    assert tok2vec.listener_map["tagger"][0] == tagger.model.layers[0]
 | 
						|
    assert (
 | 
						|
        nlp.config["components"]["tok2vec"]["model"]["@architectures"]
 | 
						|
        == "spacy.Tok2Vec.v2"
 | 
						|
    )
 | 
						|
    assert (
 | 
						|
        nlp.config["components"]["tagger"]["model"]["tok2vec"]["@architectures"]
 | 
						|
        == "spacy.Tok2VecListener.v1"
 | 
						|
    )
 | 
						|
    nlp.replace_listeners("tok2vec", "tagger", ["model.tok2vec"])
 | 
						|
    assert not isinstance(tagger.model.layers[0], Tok2VecListener)
 | 
						|
    t2v_cfg = nlp.config["components"]["tok2vec"]["model"]
 | 
						|
    assert t2v_cfg["@architectures"] == "spacy.Tok2Vec.v2"
 | 
						|
    assert nlp.config["components"]["tagger"]["model"]["tok2vec"] == t2v_cfg
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        nlp.replace_listeners("invalid", "tagger", ["model.tok2vec"])
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        nlp.replace_listeners("tok2vec", "parser", ["model.tok2vec"])
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        nlp.replace_listeners("tok2vec", "tagger", ["model.yolo"])
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        nlp.replace_listeners("tok2vec", "tagger", ["model.tok2vec", "model.yolo"])
 | 
						|
    # attempt training with the new pipeline
 | 
						|
    optimizer = nlp.initialize(lambda: examples)
 | 
						|
    for i in range(2):
 | 
						|
        losses = {}
 | 
						|
        nlp.update(examples, sgd=optimizer, losses=losses)
 | 
						|
        assert losses["tok2vec"] == 0.0
 | 
						|
        assert losses["tagger"] > 0.0
 | 
						|
 | 
						|
 | 
						|
cfg_string_multi = """
 | 
						|
    [nlp]
 | 
						|
    lang = "en"
 | 
						|
    pipeline = ["tok2vec","tagger", "ner"]
 | 
						|
 | 
						|
    [components]
 | 
						|
 | 
						|
    [components.tagger]
 | 
						|
    factory = "tagger"
 | 
						|
 | 
						|
    [components.tagger.model]
 | 
						|
    @architectures = "spacy.Tagger.v2"
 | 
						|
    nO = null
 | 
						|
 | 
						|
    [components.tagger.model.tok2vec]
 | 
						|
    @architectures = "spacy.Tok2VecListener.v1"
 | 
						|
    width = ${components.tok2vec.model.encode.width}
 | 
						|
 | 
						|
    [components.ner]
 | 
						|
    factory = "ner"
 | 
						|
 | 
						|
    [components.ner.model]
 | 
						|
    @architectures = "spacy.TransitionBasedParser.v2"
 | 
						|
 | 
						|
    [components.ner.model.tok2vec]
 | 
						|
    @architectures = "spacy.Tok2VecListener.v1"
 | 
						|
    width = ${components.tok2vec.model.encode.width}
 | 
						|
 | 
						|
    [components.tok2vec]
 | 
						|
    factory = "tok2vec"
 | 
						|
 | 
						|
    [components.tok2vec.model]
 | 
						|
    @architectures = "spacy.Tok2Vec.v2"
 | 
						|
 | 
						|
    [components.tok2vec.model.embed]
 | 
						|
    @architectures = "spacy.MultiHashEmbed.v1"
 | 
						|
    width = ${components.tok2vec.model.encode.width}
 | 
						|
    rows = [2000, 1000, 1000, 1000]
 | 
						|
    attrs = ["NORM", "PREFIX", "SUFFIX", "SHAPE"]
 | 
						|
    include_static_vectors = false
 | 
						|
 | 
						|
    [components.tok2vec.model.encode]
 | 
						|
    @architectures = "spacy.MaxoutWindowEncoder.v2"
 | 
						|
    width = 96
 | 
						|
    depth = 4
 | 
						|
    window_size = 1
 | 
						|
    maxout_pieces = 3
 | 
						|
    """
 | 
						|
 | 
						|
 | 
						|
def test_replace_listeners_from_config():
 | 
						|
    orig_config = Config().from_str(cfg_string_multi)
 | 
						|
    nlp = util.load_model_from_config(orig_config, auto_fill=True)
 | 
						|
    annots = {"tags": ["V", "Z"], "entities": [(0, 1, "A"), (1, 2, "B")]}
 | 
						|
    examples = [Example.from_dict(nlp.make_doc("x y"), annots)]
 | 
						|
    nlp.initialize(lambda: examples)
 | 
						|
    tok2vec = nlp.get_pipe("tok2vec")
 | 
						|
    tagger = nlp.get_pipe("tagger")
 | 
						|
    ner = nlp.get_pipe("ner")
 | 
						|
    assert tok2vec.listening_components == ["tagger", "ner"]
 | 
						|
    assert any(isinstance(node, Tok2VecListener) for node in ner.model.walk())
 | 
						|
    assert any(isinstance(node, Tok2VecListener) for node in tagger.model.walk())
 | 
						|
    with make_tempdir() as dir_path:
 | 
						|
        nlp.to_disk(dir_path)
 | 
						|
        base_model = str(dir_path)
 | 
						|
        new_config = {
 | 
						|
            "nlp": {"lang": "en", "pipeline": ["tok2vec", "tagger", "ner"]},
 | 
						|
            "components": {
 | 
						|
                "tok2vec": {"source": base_model},
 | 
						|
                "tagger": {
 | 
						|
                    "source": base_model,
 | 
						|
                    "replace_listeners": ["model.tok2vec"],
 | 
						|
                },
 | 
						|
                "ner": {"source": base_model},
 | 
						|
            },
 | 
						|
        }
 | 
						|
        new_nlp = util.load_model_from_config(new_config, auto_fill=True)
 | 
						|
    new_nlp.initialize(lambda: examples)
 | 
						|
    tok2vec = new_nlp.get_pipe("tok2vec")
 | 
						|
    tagger = new_nlp.get_pipe("tagger")
 | 
						|
    ner = new_nlp.get_pipe("ner")
 | 
						|
    assert tok2vec.listening_components == ["ner"]
 | 
						|
    assert any(isinstance(node, Tok2VecListener) for node in ner.model.walk())
 | 
						|
    assert not any(isinstance(node, Tok2VecListener) for node in tagger.model.walk())
 | 
						|
    t2v_cfg = new_nlp.config["components"]["tok2vec"]["model"]
 | 
						|
    assert t2v_cfg["@architectures"] == "spacy.Tok2Vec.v2"
 | 
						|
    assert new_nlp.config["components"]["tagger"]["model"]["tok2vec"] == t2v_cfg
 | 
						|
    assert (
 | 
						|
        new_nlp.config["components"]["ner"]["model"]["tok2vec"]["@architectures"]
 | 
						|
        == "spacy.Tok2VecListener.v1"
 | 
						|
    )
 | 
						|
 | 
						|
 | 
						|
cfg_string_multi_textcat = """
 | 
						|
    [nlp]
 | 
						|
    lang = "en"
 | 
						|
    pipeline = ["tok2vec","textcat_multilabel","tagger"]
 | 
						|
 | 
						|
    [components]
 | 
						|
 | 
						|
    [components.textcat_multilabel]
 | 
						|
    factory = "textcat_multilabel"
 | 
						|
 | 
						|
    [components.textcat_multilabel.model]
 | 
						|
    @architectures = "spacy.TextCatEnsemble.v2"
 | 
						|
    nO = null
 | 
						|
 | 
						|
    [components.textcat_multilabel.model.tok2vec]
 | 
						|
    @architectures = "spacy.Tok2VecListener.v1"
 | 
						|
    width = ${components.tok2vec.model.encode.width}
 | 
						|
 | 
						|
    [components.textcat_multilabel.model.linear_model]
 | 
						|
    @architectures = "spacy.TextCatBOW.v1"
 | 
						|
    exclusive_classes = false
 | 
						|
    ngram_size = 1
 | 
						|
    no_output_layer = false
 | 
						|
 | 
						|
    [components.tagger]
 | 
						|
    factory = "tagger"
 | 
						|
 | 
						|
    [components.tagger.model]
 | 
						|
    @architectures = "spacy.Tagger.v2"
 | 
						|
    nO = null
 | 
						|
 | 
						|
    [components.tagger.model.tok2vec]
 | 
						|
    @architectures = "spacy.Tok2VecListener.v1"
 | 
						|
    width = ${components.tok2vec.model.encode.width}
 | 
						|
 | 
						|
    [components.tok2vec]
 | 
						|
    factory = "tok2vec"
 | 
						|
 | 
						|
    [components.tok2vec.model]
 | 
						|
    @architectures = "spacy.Tok2Vec.v2"
 | 
						|
 | 
						|
    [components.tok2vec.model.embed]
 | 
						|
    @architectures = "spacy.MultiHashEmbed.v1"
 | 
						|
    width = ${components.tok2vec.model.encode.width}
 | 
						|
    rows = [2000, 1000, 1000, 1000]
 | 
						|
    attrs = ["NORM", "PREFIX", "SUFFIX", "SHAPE"]
 | 
						|
    include_static_vectors = false
 | 
						|
 | 
						|
    [components.tok2vec.model.encode]
 | 
						|
    @architectures = "spacy.MaxoutWindowEncoder.v2"
 | 
						|
    width = 96
 | 
						|
    depth = 4
 | 
						|
    window_size = 1
 | 
						|
    maxout_pieces = 3
 | 
						|
    """
 | 
						|
 | 
						|
 | 
						|
def test_tok2vec_listeners_textcat():
 | 
						|
    orig_config = Config().from_str(cfg_string_multi_textcat)
 | 
						|
    nlp = util.load_model_from_config(orig_config, auto_fill=True, validate=True)
 | 
						|
    assert nlp.pipe_names == ["tok2vec", "textcat_multilabel", "tagger"]
 | 
						|
    tagger = nlp.get_pipe("tagger")
 | 
						|
    textcat = nlp.get_pipe("textcat_multilabel")
 | 
						|
    tok2vec = nlp.get_pipe("tok2vec")
 | 
						|
    tagger_tok2vec = tagger.model.get_ref("tok2vec")
 | 
						|
    textcat_tok2vec = textcat.model.get_ref("tok2vec")
 | 
						|
    assert isinstance(tok2vec, Tok2Vec)
 | 
						|
    assert isinstance(tagger_tok2vec, Tok2VecListener)
 | 
						|
    assert isinstance(textcat_tok2vec, Tok2VecListener)
 | 
						|
    train_examples = []
 | 
						|
    for t in TRAIN_DATA:
 | 
						|
        train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
 | 
						|
 | 
						|
    optimizer = nlp.initialize(lambda: train_examples)
 | 
						|
    for i in range(50):
 | 
						|
        losses = {}
 | 
						|
        nlp.update(train_examples, sgd=optimizer, losses=losses)
 | 
						|
 | 
						|
    docs = list(nlp.pipe(["Eat blue ham", "I like green eggs"]))
 | 
						|
    cats0 = docs[0].cats
 | 
						|
    assert cats0["preference"] < 0.1
 | 
						|
    assert cats0["imperative"] > 0.9
 | 
						|
    cats1 = docs[1].cats
 | 
						|
    assert cats1["preference"] > 0.1
 | 
						|
    assert cats1["imperative"] < 0.9
 | 
						|
    assert [t.tag_ for t in docs[0]] == ["V", "J", "N"]
 | 
						|
    assert [t.tag_ for t in docs[1]] == ["N", "V", "J", "N"]
 |