spaCy/spacy/tests/serialize/test_serialize_config.py
2020-08-07 18:40:54 +02:00

314 lines
10 KiB
Python

import pytest
from thinc.config import Config, ConfigValidationError
import spacy
from spacy.lang.en import English
from spacy.lang.de import German
from spacy.language import Language
from spacy.util import registry, deep_merge_configs, load_model_from_config
from spacy.ml.models import build_Tok2Vec_model, build_tb_parser_model
from spacy.ml.models import MultiHashEmbed, MaxoutWindowEncoder
from ..util import make_tempdir
nlp_config_string = """
[paths]
train = ""
dev = ""
[training]
[training.train_corpus]
@readers = "spacy.Corpus.v1"
path = ${paths:train}
[training.dev_corpus]
@readers = "spacy.Corpus.v1"
path = ${paths:dev}
[training.batcher]
@batchers = "batch_by_words.v1"
size = 666
[nlp]
lang = "en"
pipeline = ["tok2vec", "tagger"]
[components]
[components.tok2vec]
factory = "tok2vec"
[components.tok2vec.model]
@architectures = "spacy.HashEmbedCNN.v1"
pretrained_vectors = null
width = 342
depth = 4
window_size = 1
embed_size = 2000
maxout_pieces = 3
subword_features = true
[components.tagger]
factory = "tagger"
[components.tagger.model]
@architectures = "spacy.Tagger.v1"
[components.tagger.model.tok2vec]
@architectures = "spacy.Tok2VecListener.v1"
width = ${components.tok2vec.model:width}
"""
parser_config_string = """
[model]
@architectures = "spacy.TransitionBasedParser.v1"
nr_feature_tokens = 99
hidden_width = 66
maxout_pieces = 2
[model.tok2vec]
@architectures = "spacy.HashEmbedCNN.v1"
pretrained_vectors = null
width = 333
depth = 4
embed_size = 5555
window_size = 1
maxout_pieces = 7
subword_features = false
"""
@registry.architectures.register("my_test_parser")
def my_parser():
tok2vec = build_Tok2Vec_model(
MultiHashEmbed(
width=321,
rows=5432,
also_embed_subwords=True,
also_use_static_vectors=False,
),
MaxoutWindowEncoder(width=321, window_size=3, maxout_pieces=4, depth=2),
)
parser = build_tb_parser_model(
tok2vec=tok2vec, nr_feature_tokens=7, hidden_width=65, maxout_pieces=5
)
return parser
def test_create_nlp_from_config():
config = Config().from_str(nlp_config_string)
with pytest.raises(ConfigValidationError):
nlp, _ = load_model_from_config(config, auto_fill=False)
nlp, resolved = load_model_from_config(config, auto_fill=True)
assert nlp.config["training"]["batcher"]["size"] == 666
assert len(nlp.config["training"]) > 1
assert nlp.pipe_names == ["tok2vec", "tagger"]
assert len(nlp.config["components"]) == 2
assert len(nlp.config["nlp"]["pipeline"]) == 2
nlp.remove_pipe("tagger")
assert len(nlp.config["components"]) == 1
assert len(nlp.config["nlp"]["pipeline"]) == 1
with pytest.raises(ValueError):
bad_cfg = {"yolo": {}}
load_model_from_config(Config(bad_cfg), auto_fill=True)
with pytest.raises(ValueError):
bad_cfg = {"pipeline": {"foo": "bar"}}
load_model_from_config(Config(bad_cfg), auto_fill=True)
def test_create_nlp_from_config_multiple_instances():
"""Test that the nlp object is created correctly for a config with multiple
instances of the same component."""
config = Config().from_str(nlp_config_string)
config["components"] = {
"t2v": config["components"]["tok2vec"],
"tagger1": config["components"]["tagger"],
"tagger2": config["components"]["tagger"],
}
config["nlp"]["pipeline"] = list(config["components"].keys())
nlp, _ = load_model_from_config(config, auto_fill=True)
assert nlp.pipe_names == ["t2v", "tagger1", "tagger2"]
assert nlp.get_pipe_meta("t2v").factory == "tok2vec"
assert nlp.get_pipe_meta("tagger1").factory == "tagger"
assert nlp.get_pipe_meta("tagger2").factory == "tagger"
pipeline_config = nlp.config["components"]
assert len(pipeline_config) == 3
assert list(pipeline_config.keys()) == ["t2v", "tagger1", "tagger2"]
assert nlp.config["nlp"]["pipeline"] == ["t2v", "tagger1", "tagger2"]
def test_serialize_nlp():
""" Create a custom nlp pipeline from config and ensure it serializes it correctly """
nlp_config = Config().from_str(nlp_config_string)
nlp, _ = load_model_from_config(nlp_config, auto_fill=True)
nlp.begin_training()
assert "tok2vec" in nlp.pipe_names
assert "tagger" in nlp.pipe_names
assert "parser" not in nlp.pipe_names
assert nlp.get_pipe("tagger").model.get_ref("tok2vec").get_dim("nO") == 342
with make_tempdir() as d:
nlp.to_disk(d)
nlp2 = spacy.load(d)
assert "tok2vec" in nlp2.pipe_names
assert "tagger" in nlp2.pipe_names
assert "parser" not in nlp2.pipe_names
assert nlp2.get_pipe("tagger").model.get_ref("tok2vec").get_dim("nO") == 342
def test_serialize_custom_nlp():
""" Create a custom nlp pipeline and ensure it serializes it correctly"""
nlp = English()
parser_cfg = dict()
parser_cfg["model"] = {"@architectures": "my_test_parser"}
nlp.add_pipe("parser", config=parser_cfg)
nlp.begin_training()
with make_tempdir() as d:
nlp.to_disk(d)
nlp2 = spacy.load(d)
model = nlp2.get_pipe("parser").model
model.get_ref("tok2vec")
upper = model.get_ref("upper")
# check that we have the correct settings, not the default ones
assert upper.get_dim("nI") == 65
def test_serialize_parser():
""" Create a non-default parser config to check nlp serializes it correctly """
nlp = English()
model_config = Config().from_str(parser_config_string)
parser = nlp.add_pipe("parser", config=model_config)
parser.add_label("nsubj")
nlp.begin_training()
with make_tempdir() as d:
nlp.to_disk(d)
nlp2 = spacy.load(d)
model = nlp2.get_pipe("parser").model
model.get_ref("tok2vec")
upper = model.get_ref("upper")
# check that we have the correct settings, not the default ones
assert upper.get_dim("nI") == 66
def test_deep_merge_configs():
config = {"a": "hello", "b": {"c": "d"}}
defaults = {"a": "world", "b": {"c": "e", "f": "g"}}
merged = deep_merge_configs(config, defaults)
assert len(merged) == 2
assert merged["a"] == "hello"
assert merged["b"] == {"c": "d", "f": "g"}
config = {"a": "hello", "b": {"@test": "x", "foo": 1}}
defaults = {"a": "world", "b": {"@test": "x", "foo": 100, "bar": 2}, "c": 100}
merged = deep_merge_configs(config, defaults)
assert len(merged) == 3
assert merged["a"] == "hello"
assert merged["b"] == {"@test": "x", "foo": 1, "bar": 2}
assert merged["c"] == 100
config = {"a": "hello", "b": {"@test": "x", "foo": 1}, "c": 100}
defaults = {"a": "world", "b": {"@test": "y", "foo": 100, "bar": 2}}
merged = deep_merge_configs(config, defaults)
assert len(merged) == 3
assert merged["a"] == "hello"
assert merged["b"] == {"@test": "x", "foo": 1}
assert merged["c"] == 100
# Test that leaving out the factory just adds to existing
config = {"a": "hello", "b": {"foo": 1}, "c": 100}
defaults = {"a": "world", "b": {"@test": "y", "foo": 100, "bar": 2}}
merged = deep_merge_configs(config, defaults)
assert len(merged) == 3
assert merged["a"] == "hello"
assert merged["b"] == {"@test": "y", "foo": 1, "bar": 2}
assert merged["c"] == 100
def test_config_nlp_roundtrip():
"""Test that a config prduced by the nlp object passes training config
validation."""
nlp = English()
nlp.add_pipe("entity_ruler")
nlp.add_pipe("ner")
new_nlp, new_config = load_model_from_config(nlp.config, auto_fill=False)
assert new_nlp.config == nlp.config
assert new_nlp.pipe_names == nlp.pipe_names
assert new_nlp._pipe_configs == nlp._pipe_configs
assert new_nlp._pipe_meta == nlp._pipe_meta
assert new_nlp._factory_meta == nlp._factory_meta
def test_serialize_config_language_specific():
"""Test that config serialization works as expected with language-specific
factories."""
name = "test_serialize_config_language_specific"
@English.factory(name, default_config={"foo": 20})
def custom_factory(nlp: Language, name: str, foo: int):
return lambda doc: doc
nlp = Language()
assert not nlp.has_factory(name)
nlp = English()
assert nlp.has_factory(name)
nlp.add_pipe(name, config={"foo": 100}, name="bar")
pipe_config = nlp.config["components"]["bar"]
assert pipe_config["foo"] == 100
assert pipe_config["factory"] == name
with make_tempdir() as d:
nlp.to_disk(d)
nlp2 = spacy.load(d)
assert nlp2.has_factory(name)
assert nlp2.pipe_names == ["bar"]
assert nlp2.get_pipe_meta("bar").factory == name
pipe_config = nlp2.config["components"]["bar"]
assert pipe_config["foo"] == 100
assert pipe_config["factory"] == name
config = Config().from_str(nlp2.config.to_str())
config["nlp"]["lang"] = "de"
with pytest.raises(ValueError):
# German doesn't have a factory, only English does
load_model_from_config(config)
def test_serialize_config_missing_pipes():
config = Config().from_str(nlp_config_string)
config["components"].pop("tok2vec")
assert "tok2vec" in config["nlp"]["pipeline"]
assert "tok2vec" not in config["components"]
with pytest.raises(ValueError):
load_model_from_config(config, auto_fill=True)
def test_config_overrides():
overrides_nested = {"nlp": {"lang": "de", "pipeline": ["tagger"]}}
overrides_dot = {"nlp.lang": "de", "nlp.pipeline": ["tagger"]}
# load_model from config with overrides passed directly to Config
config = Config().from_str(nlp_config_string, overrides=overrides_dot)
nlp, _ = load_model_from_config(config, auto_fill=True)
assert isinstance(nlp, German)
assert nlp.pipe_names == ["tagger"]
# Serialized roundtrip with config passed in
base_config = Config().from_str(nlp_config_string)
base_nlp, _ = load_model_from_config(base_config, auto_fill=True)
assert isinstance(base_nlp, English)
assert base_nlp.pipe_names == ["tok2vec", "tagger"]
with make_tempdir() as d:
base_nlp.to_disk(d)
nlp = spacy.load(d, config=overrides_nested)
assert isinstance(nlp, German)
assert nlp.pipe_names == ["tagger"]
with make_tempdir() as d:
base_nlp.to_disk(d)
nlp = spacy.load(d, config=overrides_dot)
assert isinstance(nlp, German)
assert nlp.pipe_names == ["tagger"]
with make_tempdir() as d:
base_nlp.to_disk(d)
nlp = spacy.load(d)
assert isinstance(nlp, English)
assert nlp.pipe_names == ["tok2vec", "tagger"]