spaCy/spacy/tests/test_textcat.py
2018-03-19 02:04:24 +01:00

42 lines
1.3 KiB
Python

from __future__ import unicode_literals
import random
from ..pipeline import TextCategorizer
from ..lang.en import English
from ..vocab import Vocab
from ..tokens import Doc
from ..gold import GoldParse
def test_textcat_learns_multilabel():
docs = []
nlp = English()
vocab = nlp.vocab
letters = ['a', 'b', 'c']
for w1 in letters:
for w2 in letters:
cats = {letter: float(w2==letter) for letter in letters}
docs.append((Doc(vocab, words=['d']*3 + [w1, w2] + ['d']*3), cats))
random.shuffle(docs)
model = TextCategorizer(vocab, width=8)
for letter in letters:
model.add_label(letter)
optimizer = model.begin_training()
for i in range(20):
losses = {}
Ys = [GoldParse(doc, cats=cats) for doc, cats in docs]
Xs = [doc for doc, cats in docs]
model.update(Xs, Ys, sgd=optimizer, losses=losses)
random.shuffle(docs)
for w1 in letters:
for w2 in letters:
doc = Doc(vocab, words=['d']*3 + [w1, w2] + ['d']*3)
truth = {letter: w2==letter for letter in letters}
model(doc)
for cat, score in doc.cats.items():
if not truth[cat]:
assert score < 0.5
else:
assert score > 0.5