mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	* Use isort with Black profile * isort all the things * Fix import cycles as a result of import sorting * Add DOCBIN_ALL_ATTRS type definition * Add isort to requirements * Remove isort from build dependencies check * Typo
		
			
				
	
	
		
			104 lines
		
	
	
		
			3.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			104 lines
		
	
	
		
			3.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import pytest
 | 
						|
from numpy.testing import assert_equal
 | 
						|
 | 
						|
from spacy import util
 | 
						|
from spacy.attrs import SENT_START
 | 
						|
from spacy.lang.en import English
 | 
						|
from spacy.language import Language
 | 
						|
from spacy.tests.util import make_tempdir
 | 
						|
from spacy.training import Example
 | 
						|
 | 
						|
 | 
						|
def test_label_types():
 | 
						|
    nlp = Language()
 | 
						|
    senter = nlp.add_pipe("senter")
 | 
						|
    with pytest.raises(NotImplementedError):
 | 
						|
        senter.add_label("A")
 | 
						|
 | 
						|
 | 
						|
SENT_STARTS = [0] * 14
 | 
						|
SENT_STARTS[0] = 1
 | 
						|
SENT_STARTS[5] = 1
 | 
						|
SENT_STARTS[9] = 1
 | 
						|
 | 
						|
TRAIN_DATA = [
 | 
						|
    (
 | 
						|
        "I like green eggs. Eat blue ham. I like purple eggs.",
 | 
						|
        {"sent_starts": SENT_STARTS},
 | 
						|
    ),
 | 
						|
    (
 | 
						|
        "She likes purple eggs. They hate ham. You like yellow eggs.",
 | 
						|
        {"sent_starts": SENT_STARTS},
 | 
						|
    ),
 | 
						|
]
 | 
						|
 | 
						|
 | 
						|
def test_initialize_examples():
 | 
						|
    nlp = Language()
 | 
						|
    nlp.add_pipe("senter")
 | 
						|
    train_examples = []
 | 
						|
    for t in TRAIN_DATA:
 | 
						|
        train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
 | 
						|
    # you shouldn't really call this more than once, but for testing it should be fine
 | 
						|
    nlp.initialize()
 | 
						|
    nlp.initialize(get_examples=lambda: train_examples)
 | 
						|
    with pytest.raises(TypeError):
 | 
						|
        nlp.initialize(get_examples=lambda: None)
 | 
						|
    with pytest.raises(TypeError):
 | 
						|
        nlp.initialize(get_examples=train_examples)
 | 
						|
 | 
						|
 | 
						|
def test_overfitting_IO():
 | 
						|
    # Simple test to try and quickly overfit the senter - ensuring the ML models work correctly
 | 
						|
    nlp = English()
 | 
						|
    train_examples = []
 | 
						|
    for t in TRAIN_DATA:
 | 
						|
        train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
 | 
						|
    # add some cases where SENT_START == -1
 | 
						|
    train_examples[0].reference[10].is_sent_start = False
 | 
						|
    train_examples[1].reference[1].is_sent_start = False
 | 
						|
    train_examples[1].reference[11].is_sent_start = False
 | 
						|
 | 
						|
    nlp.add_pipe("senter")
 | 
						|
    optimizer = nlp.initialize()
 | 
						|
 | 
						|
    for i in range(200):
 | 
						|
        losses = {}
 | 
						|
        nlp.update(train_examples, sgd=optimizer, losses=losses)
 | 
						|
    assert losses["senter"] < 0.001
 | 
						|
 | 
						|
    # test the trained model
 | 
						|
    test_text = TRAIN_DATA[0][0]
 | 
						|
    doc = nlp(test_text)
 | 
						|
    gold_sent_starts = [0] * 14
 | 
						|
    gold_sent_starts[0] = 1
 | 
						|
    gold_sent_starts[5] = 1
 | 
						|
    gold_sent_starts[9] = 1
 | 
						|
    assert [int(t.is_sent_start) for t in doc] == gold_sent_starts
 | 
						|
 | 
						|
    # Also test the results are still the same after IO
 | 
						|
    with make_tempdir() as tmp_dir:
 | 
						|
        nlp.to_disk(tmp_dir)
 | 
						|
        nlp2 = util.load_model_from_path(tmp_dir)
 | 
						|
        doc2 = nlp2(test_text)
 | 
						|
        assert [int(t.is_sent_start) for t in doc2] == gold_sent_starts
 | 
						|
 | 
						|
    # Make sure that running pipe twice, or comparing to call, always amounts to the same predictions
 | 
						|
    texts = [
 | 
						|
        "Just a sentence.",
 | 
						|
        "Then one more sentence about London.",
 | 
						|
        "Here is another one.",
 | 
						|
        "I like London.",
 | 
						|
    ]
 | 
						|
    batch_deps_1 = [doc.to_array([SENT_START]) for doc in nlp.pipe(texts)]
 | 
						|
    batch_deps_2 = [doc.to_array([SENT_START]) for doc in nlp.pipe(texts)]
 | 
						|
    no_batch_deps = [
 | 
						|
        doc.to_array([SENT_START]) for doc in [nlp(text) for text in texts]
 | 
						|
    ]
 | 
						|
    assert_equal(batch_deps_1, batch_deps_2)
 | 
						|
    assert_equal(batch_deps_1, no_batch_deps)
 | 
						|
 | 
						|
    # test internal pipe labels vs. Language.pipe_labels with hidden labels
 | 
						|
    assert nlp.get_pipe("senter").labels == ("I", "S")
 | 
						|
    assert "senter" not in nlp.pipe_labels
 |