mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-22 15:24:11 +03:00
e2b70df012
* Use isort with Black profile * isort all the things * Fix import cycles as a result of import sorting * Add DOCBIN_ALL_ATTRS type definition * Add isort to requirements * Remove isort from build dependencies check * Typo
337 lines
12 KiB
Python
337 lines
12 KiB
Python
import warnings
|
|
from pathlib import Path
|
|
from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple, Union
|
|
|
|
from thinc.api import Model
|
|
|
|
from .. import util
|
|
from ..errors import Errors, Warnings
|
|
from ..language import Language
|
|
from ..lookups import Lookups, load_lookups
|
|
from ..scorer import Scorer
|
|
from ..tokens import Doc, Token
|
|
from ..training import Example
|
|
from ..util import SimpleFrozenList, logger, registry
|
|
from ..vocab import Vocab
|
|
from .pipe import Pipe
|
|
|
|
|
|
@Language.factory(
|
|
"lemmatizer",
|
|
assigns=["token.lemma"],
|
|
default_config={
|
|
"model": None,
|
|
"mode": "lookup",
|
|
"overwrite": False,
|
|
"scorer": {"@scorers": "spacy.lemmatizer_scorer.v1"},
|
|
},
|
|
default_score_weights={"lemma_acc": 1.0},
|
|
)
|
|
def make_lemmatizer(
|
|
nlp: Language,
|
|
model: Optional[Model],
|
|
name: str,
|
|
mode: str,
|
|
overwrite: bool,
|
|
scorer: Optional[Callable],
|
|
):
|
|
return Lemmatizer(
|
|
nlp.vocab, model, name, mode=mode, overwrite=overwrite, scorer=scorer
|
|
)
|
|
|
|
|
|
def lemmatizer_score(examples: Iterable[Example], **kwargs) -> Dict[str, Any]:
|
|
return Scorer.score_token_attr(examples, "lemma", **kwargs)
|
|
|
|
|
|
@registry.scorers("spacy.lemmatizer_scorer.v1")
|
|
def make_lemmatizer_scorer():
|
|
return lemmatizer_score
|
|
|
|
|
|
class Lemmatizer(Pipe):
|
|
"""
|
|
The Lemmatizer supports simple part-of-speech-sensitive suffix rules and
|
|
lookup tables.
|
|
|
|
DOCS: https://spacy.io/api/lemmatizer
|
|
"""
|
|
|
|
@classmethod
|
|
def get_lookups_config(cls, mode: str) -> Tuple[List[str], List[str]]:
|
|
"""Returns the lookups configuration settings for a given mode for use
|
|
in Lemmatizer.load_lookups.
|
|
|
|
mode (str): The lemmatizer mode.
|
|
RETURNS (Tuple[List[str], List[str]]): The required and optional
|
|
lookup tables for this mode.
|
|
"""
|
|
if mode == "lookup":
|
|
return (["lemma_lookup"], [])
|
|
elif mode == "rule":
|
|
return (["lemma_rules"], ["lemma_exc", "lemma_index"])
|
|
return ([], [])
|
|
|
|
def __init__(
|
|
self,
|
|
vocab: Vocab,
|
|
model: Optional[Model],
|
|
name: str = "lemmatizer",
|
|
*,
|
|
mode: str = "lookup",
|
|
overwrite: bool = False,
|
|
scorer: Optional[Callable] = lemmatizer_score,
|
|
) -> None:
|
|
"""Initialize a Lemmatizer.
|
|
|
|
vocab (Vocab): The vocab.
|
|
model (Model): A model (not yet implemented).
|
|
name (str): The component name. Defaults to "lemmatizer".
|
|
mode (str): The lemmatizer mode: "lookup", "rule". Defaults to "lookup".
|
|
overwrite (bool): Whether to overwrite existing lemmas. Defaults to
|
|
`False`.
|
|
scorer (Optional[Callable]): The scoring method. Defaults to
|
|
Scorer.score_token_attr for the attribute "lemma".
|
|
|
|
DOCS: https://spacy.io/api/lemmatizer#init
|
|
"""
|
|
self.vocab = vocab
|
|
self.model = model
|
|
self.name = name
|
|
self._mode = mode
|
|
self.lookups = Lookups()
|
|
self.overwrite = overwrite
|
|
self._validated = False
|
|
if self.mode == "lookup":
|
|
self.lemmatize = self.lookup_lemmatize
|
|
elif self.mode == "rule":
|
|
self.lemmatize = self.rule_lemmatize
|
|
else:
|
|
mode_attr = f"{self.mode}_lemmatize"
|
|
if not hasattr(self, mode_attr):
|
|
raise ValueError(Errors.E1003.format(mode=mode))
|
|
self.lemmatize = getattr(self, mode_attr)
|
|
self.cache = {} # type: ignore[var-annotated]
|
|
self.scorer = scorer
|
|
|
|
@property
|
|
def mode(self):
|
|
return self._mode
|
|
|
|
def __call__(self, doc: Doc) -> Doc:
|
|
"""Apply the lemmatizer to one document.
|
|
|
|
doc (Doc): The Doc to process.
|
|
RETURNS (Doc): The processed Doc.
|
|
|
|
DOCS: https://spacy.io/api/lemmatizer#call
|
|
"""
|
|
if not self._validated:
|
|
self._validate_tables(Errors.E1004)
|
|
error_handler = self.get_error_handler()
|
|
try:
|
|
for token in doc:
|
|
if self.overwrite or token.lemma == 0:
|
|
token.lemma_ = self.lemmatize(token)[0]
|
|
return doc
|
|
except Exception as e:
|
|
error_handler(self.name, self, [doc], e)
|
|
|
|
def initialize(
|
|
self,
|
|
get_examples: Optional[Callable[[], Iterable[Example]]] = None,
|
|
*,
|
|
nlp: Optional[Language] = None,
|
|
lookups: Optional[Lookups] = None,
|
|
):
|
|
"""Initialize the lemmatizer and load in data.
|
|
|
|
get_examples (Callable[[], Iterable[Example]]): Function that
|
|
returns a representative sample of gold-standard Example objects.
|
|
nlp (Language): The current nlp object the component is part of.
|
|
lookups (Lookups): The lookups object containing the (optional) tables
|
|
such as "lemma_rules", "lemma_index", "lemma_exc" and
|
|
"lemma_lookup". Defaults to None.
|
|
"""
|
|
required_tables, optional_tables = self.get_lookups_config(self.mode)
|
|
if lookups is None:
|
|
logger.debug("Lemmatizer: loading tables from spacy-lookups-data")
|
|
lookups = load_lookups(lang=self.vocab.lang, tables=required_tables)
|
|
optional_lookups = load_lookups(
|
|
lang=self.vocab.lang, tables=optional_tables, strict=False
|
|
)
|
|
for table in optional_lookups.tables:
|
|
lookups.set_table(table, optional_lookups.get_table(table))
|
|
self.lookups = lookups
|
|
self._validate_tables(Errors.E1004)
|
|
|
|
def _validate_tables(self, error_message: str = Errors.E912) -> None:
|
|
"""Check that the lookups are correct for the current mode."""
|
|
required_tables, optional_tables = self.get_lookups_config(self.mode)
|
|
for table in required_tables:
|
|
if table not in self.lookups:
|
|
raise ValueError(
|
|
error_message.format(
|
|
mode=self.mode,
|
|
tables=required_tables,
|
|
found=self.lookups.tables,
|
|
)
|
|
)
|
|
self._validated = True
|
|
|
|
def lookup_lemmatize(self, token: Token) -> List[str]:
|
|
"""Lemmatize using a lookup-based approach.
|
|
|
|
token (Token): The token to lemmatize.
|
|
RETURNS (list): The available lemmas for the string.
|
|
|
|
DOCS: https://spacy.io/api/lemmatizer#lookup_lemmatize
|
|
"""
|
|
lookup_table = self.lookups.get_table("lemma_lookup", {})
|
|
result = lookup_table.get(token.text, token.text)
|
|
if isinstance(result, str):
|
|
result = [result]
|
|
return result
|
|
|
|
def rule_lemmatize(self, token: Token) -> List[str]:
|
|
"""Lemmatize using a rule-based approach.
|
|
|
|
token (Token): The token to lemmatize.
|
|
RETURNS (list): The available lemmas for the string.
|
|
|
|
DOCS: https://spacy.io/api/lemmatizer#rule_lemmatize
|
|
"""
|
|
cache_key = (token.orth, token.pos, token.morph.key) # type: ignore[attr-defined]
|
|
if cache_key in self.cache:
|
|
return self.cache[cache_key]
|
|
string = token.text
|
|
univ_pos = token.pos_.lower()
|
|
if univ_pos in ("", "eol", "space"):
|
|
if univ_pos == "":
|
|
warnings.warn(Warnings.W108)
|
|
return [string.lower()]
|
|
# See Issue #435 for example of where this logic is requied.
|
|
if self.is_base_form(token):
|
|
return [string.lower()]
|
|
index_table = self.lookups.get_table("lemma_index", {})
|
|
exc_table = self.lookups.get_table("lemma_exc", {})
|
|
rules_table = self.lookups.get_table("lemma_rules", {})
|
|
if not any(
|
|
(
|
|
index_table.get(univ_pos),
|
|
exc_table.get(univ_pos),
|
|
rules_table.get(univ_pos),
|
|
)
|
|
):
|
|
if univ_pos == "propn":
|
|
return [string]
|
|
else:
|
|
return [string.lower()]
|
|
|
|
index = index_table.get(univ_pos, {})
|
|
exceptions = exc_table.get(univ_pos, {})
|
|
rules = rules_table.get(univ_pos, {})
|
|
orig = string
|
|
string = string.lower()
|
|
forms = []
|
|
oov_forms = []
|
|
for old, new in rules:
|
|
if string.endswith(old):
|
|
form = string[: len(string) - len(old)] + new
|
|
if not form:
|
|
pass
|
|
elif form in index or not form.isalpha():
|
|
forms.append(form)
|
|
else:
|
|
oov_forms.append(form)
|
|
# Remove duplicates but preserve the ordering of applied "rules"
|
|
forms = list(dict.fromkeys(forms))
|
|
# Put exceptions at the front of the list, so they get priority.
|
|
# This is a dodgy heuristic -- but it's the best we can do until we get
|
|
# frequencies on this. We can at least prune out problematic exceptions,
|
|
# if they shadow more frequent analyses.
|
|
for form in exceptions.get(string, []):
|
|
if form not in forms:
|
|
forms.insert(0, form)
|
|
if not forms:
|
|
forms.extend(oov_forms)
|
|
if not forms:
|
|
forms.append(orig)
|
|
self.cache[cache_key] = forms
|
|
return forms
|
|
|
|
def is_base_form(self, token: Token) -> bool:
|
|
"""Check whether the token is a base form that does not need further
|
|
analysis for lemmatization.
|
|
|
|
token (Token): The token.
|
|
RETURNS (bool): Whether the token is a base form.
|
|
|
|
DOCS: https://spacy.io/api/lemmatizer#is_base_form
|
|
"""
|
|
return False
|
|
|
|
def to_disk(
|
|
self, path: Union[str, Path], *, exclude: Iterable[str] = SimpleFrozenList()
|
|
):
|
|
"""Serialize the pipe to disk.
|
|
|
|
path (str / Path): Path to a directory.
|
|
exclude (Iterable[str]): String names of serialization fields to exclude.
|
|
|
|
DOCS: https://spacy.io/api/lemmatizer#to_disk
|
|
"""
|
|
serialize = {}
|
|
serialize["vocab"] = lambda p: self.vocab.to_disk(p, exclude=exclude)
|
|
serialize["lookups"] = lambda p: self.lookups.to_disk(p)
|
|
util.to_disk(path, serialize, exclude)
|
|
|
|
def from_disk(
|
|
self, path: Union[str, Path], *, exclude: Iterable[str] = SimpleFrozenList()
|
|
) -> "Lemmatizer":
|
|
"""Load the pipe from disk. Modifies the object in place and returns it.
|
|
|
|
path (str / Path): Path to a directory.
|
|
exclude (Iterable[str]): String names of serialization fields to exclude.
|
|
RETURNS (Lemmatizer): The modified Lemmatizer object.
|
|
|
|
DOCS: https://spacy.io/api/lemmatizer#from_disk
|
|
"""
|
|
deserialize: Dict[str, Callable[[Any], Any]] = {}
|
|
deserialize["vocab"] = lambda p: self.vocab.from_disk(p, exclude=exclude)
|
|
deserialize["lookups"] = lambda p: self.lookups.from_disk(p)
|
|
util.from_disk(path, deserialize, exclude)
|
|
self._validate_tables()
|
|
return self
|
|
|
|
def to_bytes(self, *, exclude: Iterable[str] = SimpleFrozenList()) -> bytes:
|
|
"""Serialize the pipe to a bytestring.
|
|
|
|
exclude (Iterable[str]): String names of serialization fields to exclude.
|
|
RETURNS (bytes): The serialized object.
|
|
|
|
DOCS: https://spacy.io/api/lemmatizer#to_bytes
|
|
"""
|
|
serialize = {}
|
|
serialize["vocab"] = lambda: self.vocab.to_bytes(exclude=exclude)
|
|
serialize["lookups"] = self.lookups.to_bytes
|
|
return util.to_bytes(serialize, exclude)
|
|
|
|
def from_bytes(
|
|
self, bytes_data: bytes, *, exclude: Iterable[str] = SimpleFrozenList()
|
|
) -> "Lemmatizer":
|
|
"""Load the pipe from a bytestring.
|
|
|
|
bytes_data (bytes): The serialized pipe.
|
|
exclude (Iterable[str]): String names of serialization fields to exclude.
|
|
RETURNS (Lemmatizer): The loaded Lemmatizer.
|
|
|
|
DOCS: https://spacy.io/api/lemmatizer#from_bytes
|
|
"""
|
|
deserialize: Dict[str, Callable[[Any], Any]] = {}
|
|
deserialize["vocab"] = lambda b: self.vocab.from_bytes(b, exclude=exclude)
|
|
deserialize["lookups"] = lambda b: self.lookups.from_bytes(b)
|
|
util.from_bytes(bytes_data, deserialize, exclude)
|
|
self._validate_tables()
|
|
return self
|