spaCy/spacy/tests/pipeline/test_functions.py
Daniël de Kok e2b70df012
Configure isort to use the Black profile, recursively isort the spacy module (#12721)
* Use isort with Black profile

* isort all the things

* Fix import cycles as a result of import sorting

* Add DOCBIN_ALL_ATTRS type definition

* Add isort to requirements

* Remove isort from build dependencies check

* Typo
2023-06-14 17:48:41 +02:00

103 lines
3.1 KiB
Python

import pytest
from spacy.language import Language
from spacy.pipeline.functions import merge_subtokens
from spacy.tokens import Doc, Span
from ..doc.test_underscore import clean_underscore # noqa: F401
@pytest.fixture
def doc(en_vocab):
# fmt: off
words = ["This", "is", "a", "sentence", ".", "This", "is", "another", "sentence", ".", "And", "a", "third", "."]
heads = [1, 1, 3, 1, 1, 6, 6, 8, 6, 6, 11, 12, 13, 13]
deps = ["nsubj", "ROOT", "subtok", "attr", "punct", "nsubj", "ROOT",
"subtok", "attr", "punct", "subtok", "subtok", "subtok", "ROOT"]
# fmt: on
return Doc(en_vocab, words=words, heads=heads, deps=deps)
@pytest.fixture
def doc2(en_vocab):
words = ["I", "like", "New", "York", "in", "Autumn", "."]
heads = [1, 1, 3, 1, 1, 4, 1]
tags = ["PRP", "IN", "NNP", "NNP", "IN", "NNP", "."]
pos = ["PRON", "VERB", "PROPN", "PROPN", "ADP", "PROPN", "PUNCT"]
deps = ["ROOT", "prep", "compound", "pobj", "prep", "pobj", "punct"]
doc = Doc(en_vocab, words=words, heads=heads, tags=tags, pos=pos, deps=deps)
doc.ents = [Span(doc, 2, 4, label="GPE")]
return doc
def test_merge_subtokens(doc):
doc = merge_subtokens(doc)
# Doc doesn't have spaces, so the result is "And a third ."
# fmt: off
assert [t.text for t in doc] == ["This", "is", "a sentence", ".", "This", "is", "another sentence", ".", "And a third ."]
# fmt: on
def test_factories_merge_noun_chunks(doc2):
assert len(doc2) == 7
nlp = Language()
merge_noun_chunks = nlp.create_pipe("merge_noun_chunks")
merge_noun_chunks(doc2)
assert len(doc2) == 6
assert doc2[2].text == "New York"
def test_factories_merge_ents(doc2):
assert len(doc2) == 7
assert len(list(doc2.ents)) == 1
nlp = Language()
merge_entities = nlp.create_pipe("merge_entities")
merge_entities(doc2)
assert len(doc2) == 6
assert len(list(doc2.ents)) == 1
assert doc2[2].text == "New York"
def test_token_splitter():
nlp = Language()
config = {"min_length": 20, "split_length": 5}
token_splitter = nlp.add_pipe("token_splitter", config=config)
doc = nlp("aaaaabbbbbcccccdddd e f g")
assert [t.text for t in doc] == ["aaaaabbbbbcccccdddd", "e", "f", "g"]
doc = nlp("aaaaabbbbbcccccdddddeeeeeff g h i")
assert [t.text for t in doc] == [
"aaaaa",
"bbbbb",
"ccccc",
"ddddd",
"eeeee",
"ff",
"g",
"h",
"i",
]
assert all(len(t.text) <= token_splitter.split_length for t in doc)
@pytest.mark.usefixtures("clean_underscore")
def test_factories_doc_cleaner():
nlp = Language()
nlp.add_pipe("doc_cleaner")
doc = nlp.make_doc("text")
doc.tensor = [1, 2, 3]
doc = nlp(doc)
assert doc.tensor is None
nlp = Language()
nlp.add_pipe("doc_cleaner", config={"silent": False})
with pytest.warns(UserWarning):
doc = nlp("text")
Doc.set_extension("test_attr", default=-1)
nlp = Language()
nlp.add_pipe("doc_cleaner", config={"attrs": {"_.test_attr": 0}})
doc = nlp.make_doc("text")
doc._.test_attr = 100
doc = nlp(doc)
assert doc._.test_attr == 0