mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 07:57:35 +03:00 
			
		
		
		
	* Support a cfg field in transition system * Make NER 'has gold' check use right alignment for span * Pass 'negative_samples_key' property into NER transition system * Add field for negative samples to NER transition system * Check neg_key in NER has_gold * Support negative examples in NER oracle * Test for negative examples in NER * Fix name of config variable in NER * Remove vestiges of old-style partial annotation * Remove obsolete tests * Add comment noting lack of support for negative samples in parser * Additions to "neg examples" PR (#8201) * add custom error and test for deprecated format * add test for unlearning an entity * add break also for Begin's cost * add negative_samples_key property on Parser * rename * extend docs & fix some older docs issues * add subclass constructors, clean up tests, fix docs * add flaky test with ValueError if gold parse was not found * remove ValueError if n_gold == 0 * fix docstring * Hack in environment variables to try out training * Remove hack * Remove NER hack, and support 'negative O' samples * Fix O oracle * Fix transition parser * Remove 'not O' from oracle * Fix NER oracle * check for spans in both gold.ents and gold.spans and raise if so, to prevent memory access violation * use set instead of list in consistency check Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
		
			
				
	
	
		
			159 lines
		
	
	
		
			4.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			159 lines
		
	
	
		
			4.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import pytest
 | |
| from thinc.api import Adam, fix_random_seed
 | |
| from spacy import registry
 | |
| from spacy.language import Language
 | |
| from spacy.attrs import NORM
 | |
| from spacy.vocab import Vocab
 | |
| from spacy.training import Example
 | |
| from spacy.tokens import Doc
 | |
| from spacy.pipeline import DependencyParser, EntityRecognizer
 | |
| from spacy.pipeline.ner import DEFAULT_NER_MODEL
 | |
| from spacy.pipeline.dep_parser import DEFAULT_PARSER_MODEL
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def vocab():
 | |
|     return Vocab(lex_attr_getters={NORM: lambda s: s})
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def parser(vocab):
 | |
|     cfg = {"model": DEFAULT_PARSER_MODEL}
 | |
|     model = registry.resolve(cfg, validate=True)["model"]
 | |
|     parser = DependencyParser(vocab, model)
 | |
|     return parser
 | |
| 
 | |
| 
 | |
| def test_init_parser(parser):
 | |
|     pass
 | |
| 
 | |
| 
 | |
| def _train_parser(parser):
 | |
|     fix_random_seed(1)
 | |
|     parser.add_label("left")
 | |
|     parser.initialize(lambda: [_parser_example(parser)])
 | |
|     sgd = Adam(0.001)
 | |
| 
 | |
|     for i in range(5):
 | |
|         losses = {}
 | |
|         doc = Doc(parser.vocab, words=["a", "b", "c", "d"])
 | |
|         gold = {"heads": [1, 1, 3, 3], "deps": ["left", "ROOT", "left", "ROOT"]}
 | |
|         example = Example.from_dict(doc, gold)
 | |
|         parser.update([example], sgd=sgd, losses=losses)
 | |
|     return parser
 | |
| 
 | |
| 
 | |
| def _parser_example(parser):
 | |
|     doc = Doc(parser.vocab, words=["a", "b", "c", "d"])
 | |
|     gold = {"heads": [1, 1, 3, 3], "deps": ["right", "ROOT", "left", "ROOT"]}
 | |
|     return Example.from_dict(doc, gold)
 | |
| 
 | |
| 
 | |
| def _ner_example(ner):
 | |
|     doc = Doc(
 | |
|         ner.vocab,
 | |
|         words=["Joe", "loves", "visiting", "London", "during", "the", "weekend"],
 | |
|     )
 | |
|     gold = {"entities": [(0, 3, "PERSON"), (19, 25, "LOC")]}
 | |
|     return Example.from_dict(doc, gold)
 | |
| 
 | |
| 
 | |
| def test_add_label(parser):
 | |
|     parser = _train_parser(parser)
 | |
|     parser.add_label("right")
 | |
|     sgd = Adam(0.001)
 | |
|     for i in range(100):
 | |
|         losses = {}
 | |
|         parser.update([_parser_example(parser)], sgd=sgd, losses=losses)
 | |
|     doc = Doc(parser.vocab, words=["a", "b", "c", "d"])
 | |
|     doc = parser(doc)
 | |
|     assert doc[0].dep_ == "right"
 | |
|     assert doc[2].dep_ == "left"
 | |
| 
 | |
| 
 | |
| def test_add_label_deserializes_correctly():
 | |
|     cfg = {"model": DEFAULT_NER_MODEL}
 | |
|     model = registry.resolve(cfg, validate=True)["model"]
 | |
|     ner1 = EntityRecognizer(Vocab(), model)
 | |
|     ner1.add_label("C")
 | |
|     ner1.add_label("B")
 | |
|     ner1.add_label("A")
 | |
|     ner1.initialize(lambda: [_ner_example(ner1)])
 | |
|     ner2 = EntityRecognizer(Vocab(), model)
 | |
| 
 | |
|     # the second model needs to be resized before we can call from_bytes
 | |
|     ner2.model.attrs["resize_output"](ner2.model, ner1.moves.n_moves)
 | |
|     ner2.from_bytes(ner1.to_bytes())
 | |
|     assert ner1.moves.n_moves == ner2.moves.n_moves
 | |
|     for i in range(ner1.moves.n_moves):
 | |
|         assert ner1.moves.get_class_name(i) == ner2.moves.get_class_name(i)
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize(
 | |
|     "pipe_cls,n_moves,model_config",
 | |
|     [
 | |
|         (DependencyParser, 5, DEFAULT_PARSER_MODEL),
 | |
|         (EntityRecognizer, 4, DEFAULT_NER_MODEL),
 | |
|     ],
 | |
| )
 | |
| def test_add_label_get_label(pipe_cls, n_moves, model_config):
 | |
|     """Test that added labels are returned correctly. This test was added to
 | |
|     test for a bug in DependencyParser.labels that'd cause it to fail when
 | |
|     splitting the move names.
 | |
|     """
 | |
|     labels = ["A", "B", "C"]
 | |
|     model = registry.resolve({"model": model_config}, validate=True)["model"]
 | |
|     pipe = pipe_cls(Vocab(), model)
 | |
|     for label in labels:
 | |
|         pipe.add_label(label)
 | |
|     assert len(pipe.move_names) == len(labels) * n_moves
 | |
|     pipe_labels = sorted(list(pipe.labels))
 | |
|     assert pipe_labels == labels
 | |
| 
 | |
| 
 | |
| def test_ner_labels_added_implicitly_on_predict():
 | |
|     nlp = Language()
 | |
|     ner = nlp.add_pipe("ner")
 | |
|     for label in ["A", "B", "C"]:
 | |
|         ner.add_label(label)
 | |
|     nlp.initialize()
 | |
|     doc = Doc(nlp.vocab, words=["hello", "world"], ents=["B-D", "O"])
 | |
|     ner(doc)
 | |
|     assert [t.ent_type_ for t in doc] == ["D", ""]
 | |
|     assert "D" in ner.labels
 | |
| 
 | |
| 
 | |
| def test_ner_labels_added_implicitly_on_beam_parse():
 | |
|     nlp = Language()
 | |
|     ner = nlp.add_pipe("beam_ner")
 | |
|     for label in ["A", "B", "C"]:
 | |
|         ner.add_label(label)
 | |
|     nlp.initialize()
 | |
|     doc = Doc(nlp.vocab, words=["hello", "world"], ents=["B-D", "O"])
 | |
|     ner.beam_parse([doc], beam_width=32)
 | |
|     assert "D" in ner.labels
 | |
| 
 | |
| 
 | |
| def test_ner_labels_added_implicitly_on_greedy_parse():
 | |
|     nlp = Language()
 | |
|     ner = nlp.add_pipe("beam_ner")
 | |
|     for label in ["A", "B", "C"]:
 | |
|         ner.add_label(label)
 | |
|     nlp.initialize()
 | |
|     doc = Doc(nlp.vocab, words=["hello", "world"], ents=["B-D", "O"])
 | |
|     ner.greedy_parse([doc])
 | |
|     assert "D" in ner.labels
 | |
| 
 | |
| 
 | |
| def test_ner_labels_added_implicitly_on_update():
 | |
|     nlp = Language()
 | |
|     ner = nlp.add_pipe("ner")
 | |
|     for label in ["A", "B", "C"]:
 | |
|         ner.add_label(label)
 | |
|     nlp.initialize()
 | |
|     doc = Doc(nlp.vocab, words=["hello", "world"], ents=["B-D", "O"])
 | |
|     example = Example(nlp.make_doc(doc.text), doc)
 | |
|     assert "D" not in ner.labels
 | |
|     nlp.update([example])
 | |
|     assert "D" in ner.labels
 |