mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 18:26:30 +03:00
b841d3fe75
* Add sent_starts to GoldParse * Add SentTagger pipeline component Add `SentTagger` pipeline component as a subclass of `Tagger`. * Model reduces default parameters from `Tagger` to be small and fast * Hard-coded set of two labels: * S (1): token at beginning of sentence * I (0): all other sentence positions * Sets `token.sent_start` values * Add sentence segmentation to Scorer Report `sent_p/r/f` for sentence boundaries, which may be provided by various pipeline components. * Add sentence segmentation to CLI evaluate * Add senttagger metrics/scoring to train CLI * Rename SentTagger to SentenceRecognizer * Add SentenceRecognizer to spacy.pipes imports * Add SentenceRecognizer serialization test * Shorten component name to sentrec * Remove duplicates from train CLI output metrics
154 lines
5.1 KiB
Python
154 lines
5.1 KiB
Python
# coding: utf-8
|
|
from __future__ import unicode_literals
|
|
|
|
import pytest
|
|
from spacy.pipeline import Tagger, DependencyParser, EntityRecognizer
|
|
from spacy.pipeline import Tensorizer, TextCategorizer, SentenceRecognizer
|
|
|
|
from ..util import make_tempdir
|
|
|
|
|
|
test_parsers = [DependencyParser, EntityRecognizer]
|
|
|
|
|
|
@pytest.fixture
|
|
def parser(en_vocab):
|
|
parser = DependencyParser(en_vocab)
|
|
parser.add_label("nsubj")
|
|
parser.model, cfg = parser.Model(parser.moves.n_moves)
|
|
parser.cfg.update(cfg)
|
|
return parser
|
|
|
|
|
|
@pytest.fixture
|
|
def blank_parser(en_vocab):
|
|
parser = DependencyParser(en_vocab)
|
|
return parser
|
|
|
|
|
|
@pytest.fixture
|
|
def taggers(en_vocab):
|
|
tagger1 = Tagger(en_vocab)
|
|
tagger2 = Tagger(en_vocab)
|
|
tagger1.model = tagger1.Model(8)
|
|
tagger2.model = tagger1.model
|
|
return (tagger1, tagger2)
|
|
|
|
|
|
@pytest.mark.parametrize("Parser", test_parsers)
|
|
def test_serialize_parser_roundtrip_bytes(en_vocab, Parser):
|
|
parser = Parser(en_vocab)
|
|
parser.model, _ = parser.Model(10)
|
|
new_parser = Parser(en_vocab)
|
|
new_parser.model, _ = new_parser.Model(10)
|
|
new_parser = new_parser.from_bytes(parser.to_bytes(exclude=["vocab"]))
|
|
assert new_parser.to_bytes(exclude=["vocab"]) == parser.to_bytes(exclude=["vocab"])
|
|
|
|
|
|
@pytest.mark.parametrize("Parser", test_parsers)
|
|
def test_serialize_parser_roundtrip_disk(en_vocab, Parser):
|
|
parser = Parser(en_vocab)
|
|
parser.model, _ = parser.Model(0)
|
|
with make_tempdir() as d:
|
|
file_path = d / "parser"
|
|
parser.to_disk(file_path)
|
|
parser_d = Parser(en_vocab)
|
|
parser_d.model, _ = parser_d.Model(0)
|
|
parser_d = parser_d.from_disk(file_path)
|
|
parser_bytes = parser.to_bytes(exclude=["model", "vocab"])
|
|
parser_d_bytes = parser_d.to_bytes(exclude=["model", "vocab"])
|
|
assert parser_bytes == parser_d_bytes
|
|
|
|
|
|
def test_to_from_bytes(parser, blank_parser):
|
|
assert parser.model is not True
|
|
assert blank_parser.model is True
|
|
assert blank_parser.moves.n_moves != parser.moves.n_moves
|
|
bytes_data = parser.to_bytes(exclude=["vocab"])
|
|
blank_parser.from_bytes(bytes_data)
|
|
assert blank_parser.model is not True
|
|
assert blank_parser.moves.n_moves == parser.moves.n_moves
|
|
|
|
|
|
@pytest.mark.skip(
|
|
reason="This seems to be a dict ordering bug somewhere. Only failing on some platforms."
|
|
)
|
|
def test_serialize_tagger_roundtrip_bytes(en_vocab, taggers):
|
|
tagger1 = taggers[0]
|
|
tagger1_b = tagger1.to_bytes()
|
|
tagger1 = tagger1.from_bytes(tagger1_b)
|
|
assert tagger1.to_bytes() == tagger1_b
|
|
new_tagger1 = Tagger(en_vocab).from_bytes(tagger1_b)
|
|
assert new_tagger1.to_bytes() == tagger1_b
|
|
|
|
|
|
def test_serialize_tagger_roundtrip_disk(en_vocab, taggers):
|
|
tagger1, tagger2 = taggers
|
|
with make_tempdir() as d:
|
|
file_path1 = d / "tagger1"
|
|
file_path2 = d / "tagger2"
|
|
tagger1.to_disk(file_path1)
|
|
tagger2.to_disk(file_path2)
|
|
tagger1_d = Tagger(en_vocab).from_disk(file_path1)
|
|
tagger2_d = Tagger(en_vocab).from_disk(file_path2)
|
|
assert tagger1_d.to_bytes() == tagger2_d.to_bytes()
|
|
|
|
|
|
def test_serialize_tensorizer_roundtrip_bytes(en_vocab):
|
|
tensorizer = Tensorizer(en_vocab)
|
|
tensorizer.model = tensorizer.Model()
|
|
tensorizer_b = tensorizer.to_bytes(exclude=["vocab"])
|
|
new_tensorizer = Tensorizer(en_vocab).from_bytes(tensorizer_b)
|
|
assert new_tensorizer.to_bytes(exclude=["vocab"]) == tensorizer_b
|
|
|
|
|
|
def test_serialize_tensorizer_roundtrip_disk(en_vocab):
|
|
tensorizer = Tensorizer(en_vocab)
|
|
tensorizer.model = tensorizer.Model()
|
|
with make_tempdir() as d:
|
|
file_path = d / "tensorizer"
|
|
tensorizer.to_disk(file_path)
|
|
tensorizer_d = Tensorizer(en_vocab).from_disk(file_path)
|
|
assert tensorizer.to_bytes(exclude=["vocab"]) == tensorizer_d.to_bytes(
|
|
exclude=["vocab"]
|
|
)
|
|
|
|
|
|
def test_serialize_textcat_empty(en_vocab):
|
|
# See issue #1105
|
|
textcat = TextCategorizer(en_vocab, labels=["ENTITY", "ACTION", "MODIFIER"])
|
|
textcat.to_bytes(exclude=["vocab"])
|
|
|
|
|
|
@pytest.mark.parametrize("Parser", test_parsers)
|
|
def test_serialize_pipe_exclude(en_vocab, Parser):
|
|
def get_new_parser():
|
|
new_parser = Parser(en_vocab)
|
|
new_parser.model, _ = new_parser.Model(0)
|
|
return new_parser
|
|
|
|
parser = Parser(en_vocab)
|
|
parser.model, _ = parser.Model(0)
|
|
parser.cfg["foo"] = "bar"
|
|
new_parser = get_new_parser().from_bytes(parser.to_bytes(exclude=["vocab"]))
|
|
assert "foo" in new_parser.cfg
|
|
new_parser = get_new_parser().from_bytes(
|
|
parser.to_bytes(exclude=["vocab"]), exclude=["cfg"]
|
|
)
|
|
assert "foo" not in new_parser.cfg
|
|
new_parser = get_new_parser().from_bytes(
|
|
parser.to_bytes(exclude=["cfg"]), exclude=["vocab"]
|
|
)
|
|
assert "foo" not in new_parser.cfg
|
|
with pytest.raises(ValueError):
|
|
parser.to_bytes(cfg=False, exclude=["vocab"])
|
|
with pytest.raises(ValueError):
|
|
get_new_parser().from_bytes(parser.to_bytes(exclude=["vocab"]), cfg=False)
|
|
|
|
|
|
def test_serialize_sentencerecognizer(en_vocab):
|
|
sr = SentenceRecognizer(en_vocab)
|
|
sr_b = sr.to_bytes()
|
|
sr_d = SentenceRecognizer(en_vocab).from_bytes(sr_b)
|
|
assert sr.to_bytes() == sr_d.to_bytes()
|