spaCy/website/docs/api/sentencerecognizer.mdx
Daniël de Kok 5e297aa20e
Add TrainablePipe.{distill,get_teacher_student_loss} (#12016)
* Add `TrainablePipe.{distill,get_teacher_student_loss}`

This change adds two methods:

- `TrainablePipe::distill` which performs a training step of a
   student pipe on a teacher pipe, giving a batch of `Doc`s.
- `TrainablePipe::get_teacher_student_loss` computes the loss
  of a student relative to the teacher.

The `distill` or `get_teacher_student_loss` methods are also implemented
in the tagger, edit tree lemmatizer, and parser pipes, to enable
distillation in those pipes and as an example for other pipes.

* Fix stray `Beam` import

* Fix incorrect import

* Apply suggestions from code review

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* TrainablePipe.distill: use `Iterable[Example]`

* Add Pipe.is_distillable method

* Add `validate_distillation_examples`

This first calls `validate_examples` and then checks that the
student/teacher tokens are the same.

* Update distill documentation

* Add distill documentation for all pipes that support distillation

* Fix incorrect identifier

* Apply suggestions from code review

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* Add comment to explain `is_distillable`

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
2023-01-16 10:25:53 +01:00

431 lines
22 KiB
Plaintext

---
title: SentenceRecognizer
tag: class
source: spacy/pipeline/senter.pyx
version: 3
teaser: 'Pipeline component for sentence segmentation'
api_base_class: /api/tagger
api_string_name: senter
api_trainable: true
---
A trainable pipeline component for sentence segmentation. For a simpler,
rule-based strategy, see the [`Sentencizer`](/api/sentencizer).
## Assigned Attributes {id="assigned-attributes"}
Predicted values will be assigned to `Token.is_sent_start`. The resulting
sentences can be accessed using `Doc.sents`.
| Location | Value |
| --------------------- | ------------------------------------------------------------------------------------------------------------------------------ |
| `Token.is_sent_start` | A boolean value indicating whether the token starts a sentence. This will be either `True` or `False` for all tokens. ~~bool~~ |
| `Doc.sents` | An iterator over sentences in the `Doc`, determined by `Token.is_sent_start` values. ~~Iterator[Span]~~ |
## Config and implementation {id="config"}
The default config is defined by the pipeline component factory and describes
how the component should be configured. You can override its settings via the
`config` argument on [`nlp.add_pipe`](/api/language#add_pipe) or in your
[`config.cfg` for training](/usage/training#config). See the
[model architectures](/api/architectures) documentation for details on the
architectures and their arguments and hyperparameters.
> #### Example
>
> ```python
> from spacy.pipeline.senter import DEFAULT_SENTER_MODEL
> config = {"model": DEFAULT_SENTER_MODEL,}
> nlp.add_pipe("senter", config=config)
> ```
| Setting | Description |
| ----------------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `model` | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. Defaults to [Tagger](/api/architectures#Tagger). ~~Model[List[Doc], List[Floats2d]]~~ |
| `overwrite` <Tag variant="new">3.2</Tag> | Whether existing annotation is overwritten. Defaults to `False`. ~~bool~~ |
| `scorer` <Tag variant="new">3.2</Tag> | The scoring method. Defaults to [`Scorer.score_spans`](/api/scorer#score_spans) for the attribute `"sents"`. ~~Optional[Callable]~~ |
| `save_activations` <Tag variant="new">4.0</Tag> | Save activations in `Doc` when annotating. Saved activations are `"probabilities"` and `"label_ids"`. ~~Union[bool, list[str]]~~ |
```python
%%GITHUB_SPACY/spacy/pipeline/senter.pyx
```
## SentenceRecognizer.\_\_init\_\_ {id="init",tag="method"}
Initialize the sentence recognizer.
> #### Example
>
> ```python
> # Construction via add_pipe with default model
> senter = nlp.add_pipe("senter")
>
> # Construction via create_pipe with custom model
> config = {"model": {"@architectures": "my_senter"}}
> senter = nlp.add_pipe("senter", config=config)
>
> # Construction from class
> from spacy.pipeline import SentenceRecognizer
> senter = SentenceRecognizer(nlp.vocab, model)
> ```
Create a new pipeline instance. In your application, you would normally use a
shortcut for this and instantiate the component using its string name and
[`nlp.add_pipe`](/api/language#add_pipe).
| Name | Description |
| ---------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------- |
| `vocab` | The shared vocabulary. ~~Vocab~~ |
| `model` | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. ~~Model[List[Doc], List[Floats2d]]~~ |
| `name` | String name of the component instance. Used to add entries to the `losses` during training. ~~str~~ |
| _keyword-only_ | |
| `overwrite` <Tag variant="new">3.2</Tag> | Whether existing annotation is overwritten. Defaults to `False`. ~~bool~~ |
| `scorer` <Tag variant="new">3.2</Tag> | The scoring method. Defaults to [`Scorer.score_spans`](/api/scorer#score_spans) for the attribute `"sents"`. ~~Optional[Callable]~~ |
## SentenceRecognizer.\_\_call\_\_ {id="call",tag="method"}
Apply the pipe to one document. The document is modified in place, and returned.
This usually happens under the hood when the `nlp` object is called on a text
and all pipeline components are applied to the `Doc` in order. Both
[`__call__`](/api/sentencerecognizer#call) and
[`pipe`](/api/sentencerecognizer#pipe) delegate to the
[`predict`](/api/sentencerecognizer#predict) and
[`set_annotations`](/api/sentencerecognizer#set_annotations) methods.
> #### Example
>
> ```python
> doc = nlp("This is a sentence.")
> senter = nlp.add_pipe("senter")
> # This usually happens under the hood
> processed = senter(doc)
> ```
| Name | Description |
| ----------- | -------------------------------- |
| `doc` | The document to process. ~~Doc~~ |
| **RETURNS** | The processed document. ~~Doc~~ |
## SentenceRecognizer.distill {id="distill", tag="method,experimental", version="4"}
Train a pipe (the student) on the predictions of another pipe (the teacher). The
student is typically trained on the probability distribution of the teacher, but
details may differ per pipe. The goal of distillation is to transfer knowledge
from the teacher to the student.
The distillation is performed on ~~Example~~ objects. The `Example.reference`
and `Example.predicted` ~~Doc~~s must have the same number of tokens and the
same orthography. Even though the reference does not need have to have gold
annotations, the teacher could adds its own annotations when necessary.
This feature is experimental.
> #### Example
>
> ```python
> teacher_pipe = teacher.add_pipe("senter")
> student_pipe = student.add_pipe("senter")
> optimizer = nlp.resume_training()
> losses = student.distill(teacher_pipe, examples, sgd=optimizer)
> ```
| Name | Description |
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------- |
| `teacher_pipe` | The teacher pipe to learn from. ~~Optional[TrainablePipe]~~ |
| `examples` | Distillation examples. The reference and predicted docs must have the same number of tokens and the same orthography. ~~Iterable[Example]~~ |
| _keyword-only_ | |
| `drop` | Dropout rate. ~~float~~ |
| `sgd` | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~ |
| `losses` | Optional record of the loss during distillation. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~ |
| **RETURNS** | The updated `losses` dictionary. ~~Dict[str, float]~~ |
## SentenceRecognizer.pipe {id="pipe",tag="method"}
Apply the pipe to a stream of documents. This usually happens under the hood
when the `nlp` object is called on a text and all pipeline components are
applied to the `Doc` in order. Both [`__call__`](/api/sentencerecognizer#call)
and [`pipe`](/api/sentencerecognizer#pipe) delegate to the
[`predict`](/api/sentencerecognizer#predict) and
[`set_annotations`](/api/sentencerecognizer#set_annotations) methods.
> #### Example
>
> ```python
> senter = nlp.add_pipe("senter")
> for doc in senter.pipe(docs, batch_size=50):
> pass
> ```
| Name | Description |
| -------------- | ------------------------------------------------------------- |
| `stream` | A stream of documents. ~~Iterable[Doc]~~ |
| _keyword-only_ | |
| `batch_size` | The number of documents to buffer. Defaults to `128`. ~~int~~ |
| **YIELDS** | The processed documents in order. ~~Doc~~ |
## SentenceRecognizer.initialize {id="initialize",tag="method"}
Initialize the component for training. `get_examples` should be a function that
returns an iterable of [`Example`](/api/example) objects. **At least one example
should be supplied.** The data examples are used to **initialize the model** of
the component and can either be the full training data or a representative
sample. Initialization includes validating the network,
[inferring missing shapes](https://thinc.ai/docs/usage-models#validation) and
setting up the label scheme based on the data. This method is typically called
by [`Language.initialize`](/api/language#initialize).
> #### Example
>
> ```python
> senter = nlp.add_pipe("senter")
> senter.initialize(lambda: examples, nlp=nlp)
> ```
| Name | Description |
| -------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. Must contain at least one `Example`. ~~Callable[[], Iterable[Example]]~~ |
| _keyword-only_ | |
| `nlp` | The current `nlp` object. Defaults to `None`. ~~Optional[Language]~~ |
## SentenceRecognizer.predict {id="predict",tag="method"}
Apply the component's model to a batch of [`Doc`](/api/doc) objects, without
modifying them.
> #### Example
>
> ```python
> senter = nlp.add_pipe("senter")
> scores = senter.predict([doc1, doc2])
> ```
| Name | Description |
| ----------- | ------------------------------------------- |
| `docs` | The documents to predict. ~~Iterable[Doc]~~ |
| **RETURNS** | The model's prediction for each document. |
## SentenceRecognizer.set_annotations {id="set_annotations",tag="method"}
Modify a batch of [`Doc`](/api/doc) objects, using pre-computed scores.
> #### Example
>
> ```python
> senter = nlp.add_pipe("senter")
> scores = senter.predict([doc1, doc2])
> senter.set_annotations([doc1, doc2], scores)
> ```
| Name | Description |
| -------- | ------------------------------------------------------------ |
| `docs` | The documents to modify. ~~Iterable[Doc]~~ |
| `scores` | The scores to set, produced by `SentenceRecognizer.predict`. |
## SentenceRecognizer.update {id="update",tag="method"}
Learn from a batch of [`Example`](/api/example) objects containing the
predictions and gold-standard annotations, and update the component's model.
Delegates to [`predict`](/api/sentencerecognizer#predict) and
[`get_loss`](/api/sentencerecognizer#get_loss).
> #### Example
>
> ```python
> senter = nlp.add_pipe("senter")
> optimizer = nlp.initialize()
> losses = senter.update(examples, sgd=optimizer)
> ```
| Name | Description |
| -------------- | ------------------------------------------------------------------------------------------------------------------------ |
| `examples` | A batch of [`Example`](/api/example) objects to learn from. ~~Iterable[Example]~~ |
| _keyword-only_ | |
| `drop` | The dropout rate. ~~float~~ |
| `sgd` | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~ |
| `losses` | Optional record of the loss during training. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~ |
| **RETURNS** | The updated `losses` dictionary. ~~Dict[str, float]~~ |
## SentenceRecognizer.rehearse {id="rehearse",tag="method,experimental",version="3"}
Perform a "rehearsal" update from a batch of data. Rehearsal updates teach the
current model to make predictions similar to an initial model to try to address
the "catastrophic forgetting" problem. This feature is experimental.
> #### Example
>
> ```python
> senter = nlp.add_pipe("senter")
> optimizer = nlp.resume_training()
> losses = senter.rehearse(examples, sgd=optimizer)
> ```
| Name | Description |
| -------------- | ------------------------------------------------------------------------------------------------------------------------ |
| `examples` | A batch of [`Example`](/api/example) objects to learn from. ~~Iterable[Example]~~ |
| _keyword-only_ | |
| `drop` | The dropout rate. ~~float~~ |
| `sgd` | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~ |
| `losses` | Optional record of the loss during training. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~ |
| **RETURNS** | The updated `losses` dictionary. ~~Dict[str, float]~~ |
## SentenceRecognizer.get_loss {id="get_loss",tag="method"}
Find the loss and gradient of loss for the batch of documents and their
predicted scores.
> #### Example
>
> ```python
> senter = nlp.add_pipe("senter")
> scores = senter.predict([eg.predicted for eg in examples])
> loss, d_loss = senter.get_loss(examples, scores)
> ```
| Name | Description |
| ----------- | --------------------------------------------------------------------------- |
| `examples` | The batch of examples. ~~Iterable[Example]~~ |
| `scores` | Scores representing the model's predictions. |
| **RETURNS** | The loss and the gradient, i.e. `(loss, gradient)`. ~~Tuple[float, float]~~ |
## SentenceRecognizer.get_teacher_student_loss {id="get_teacher_student_loss", tag="method", version="4"}
Calculate the loss and its gradient for the batch of student scores relative to
the teacher scores.
> #### Example
>
> ```python
> teacher_senter = teacher.get_pipe("senter")
> student_senter = student.add_pipe("senter")
> student_scores = student_senter.predict([eg.predicted for eg in examples])
> teacher_scores = teacher_senter.predict([eg.predicted for eg in examples])
> loss, d_loss = student_senter.get_teacher_student_loss(teacher_scores, student_scores)
> ```
| Name | Description |
| ---------------- | --------------------------------------------------------------------------- |
| `teacher_scores` | Scores representing the teacher model's predictions. |
| `student_scores` | Scores representing the student model's predictions. |
| **RETURNS** | The loss and the gradient, i.e. `(loss, gradient)`. ~~Tuple[float, float]~~ |
## SentenceRecognizer.create_optimizer {id="create_optimizer",tag="method"}
Create an optimizer for the pipeline component.
> #### Example
>
> ```python
> senter = nlp.add_pipe("senter")
> optimizer = senter.create_optimizer()
> ```
| Name | Description |
| ----------- | ---------------------------- |
| **RETURNS** | The optimizer. ~~Optimizer~~ |
## SentenceRecognizer.use_params {id="use_params",tag="method, contextmanager"}
Modify the pipe's model, to use the given parameter values. At the end of the
context, the original parameters are restored.
> #### Example
>
> ```python
> senter = nlp.add_pipe("senter")
> with senter.use_params(optimizer.averages):
> senter.to_disk("/best_model")
> ```
| Name | Description |
| -------- | -------------------------------------------------- |
| `params` | The parameter values to use in the model. ~~dict~~ |
## SentenceRecognizer.to_disk {id="to_disk",tag="method"}
Serialize the pipe to disk.
> #### Example
>
> ```python
> senter = nlp.add_pipe("senter")
> senter.to_disk("/path/to/senter")
> ```
| Name | Description |
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------ |
| `path` | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
| _keyword-only_ | |
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
## SentenceRecognizer.from_disk {id="from_disk",tag="method"}
Load the pipe from disk. Modifies the object in place and returns it.
> #### Example
>
> ```python
> senter = nlp.add_pipe("senter")
> senter.from_disk("/path/to/senter")
> ```
| Name | Description |
| -------------- | ----------------------------------------------------------------------------------------------- |
| `path` | A path to a directory. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
| _keyword-only_ | |
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
| **RETURNS** | The modified `SentenceRecognizer` object. ~~SentenceRecognizer~~ |
## SentenceRecognizer.to_bytes {id="to_bytes",tag="method"}
> #### Example
>
> ```python
> senter = nlp.add_pipe("senter")
> senter_bytes = senter.to_bytes()
> ```
Serialize the pipe to a bytestring.
| Name | Description |
| -------------- | ------------------------------------------------------------------------------------------- |
| _keyword-only_ | |
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
| **RETURNS** | The serialized form of the `SentenceRecognizer` object. ~~bytes~~ |
## SentenceRecognizer.from_bytes {id="from_bytes",tag="method"}
Load the pipe from a bytestring. Modifies the object in place and returns it.
> #### Example
>
> ```python
> senter_bytes = senter.to_bytes()
> senter = nlp.add_pipe("senter")
> senter.from_bytes(senter_bytes)
> ```
| Name | Description |
| -------------- | ------------------------------------------------------------------------------------------- |
| `bytes_data` | The data to load from. ~~bytes~~ |
| _keyword-only_ | |
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
| **RETURNS** | The `SentenceRecognizer` object. ~~SentenceRecognizer~~ |
## Serialization fields {id="serialization-fields"}
During serialization, spaCy will export several data fields used to restore
different aspects of the object. If needed, you can exclude them from
serialization by passing in the string names via the `exclude` argument.
> #### Example
>
> ```python
> data = senter.to_disk("/path", exclude=["vocab"])
> ```
| Name | Description |
| ------- | -------------------------------------------------------------- |
| `vocab` | The shared [`Vocab`](/api/vocab). |
| `cfg` | The config file. You usually don't want to exclude this. |
| `model` | The binary model data. You usually don't want to exclude this. |