mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-06 07:16:29 +03:00
a183db3cef
* Try to fix doc.copy * Set dev version * Make vocab always own lexemes * Change version * Add SpanGroups.copy method * Fix set_annotations during Parser.update * Fix dict proxy copy * Upd version * Fix copying SpanGroups * Fix set_annotations in parser.update * Fix parser set_annotations during update * Revert "Fix parser set_annotations during update" This reverts commiteb138c89ed
. * Revert "Fix set_annotations in parser.update" This reverts commitc6df0eafd0
. * Fix set_annotations during parser update * Inc version * Handle final states in get_oracle_sequence * Inc version * Try to fix parser training * Inc version * Fix * Inc version * Fix parser oracle * Inc version * Inc version * Fix transition has_gold * Inc version * Try to use real histories, not oracle * Inc version * Upd parser * Inc version * WIP on rewrite parser * WIP refactor parser * New progress on parser model refactor * Prepare to remove parser_model.pyx * Convert parser from cdef class * Delete spacy.ml.parser_model * Delete _precomputable_affine module * Wire up tb_framework to new parser model * Wire up parser model * Uncython ner.pyx and dep_parser.pyx * Uncython * Work on parser model * Support unseen_classes in parser model * Support unseen classes in parser * Cleaner handling of unseen classes * Work through tests * Keep working through errors * Keep working through errors * Work on parser. 15 tests failing * Xfail beam stuff. 9 failures * More xfail. 7 failures * Xfail. 6 failures * cleanup * formatting * fixes * pass nO through * Fix empty doc in update * Hackishly fix resizing. 3 failures * Fix redundant test. 2 failures * Add reference version * black formatting * Get tests passing with reference implementation * Fix missing prints * Add missing file * Improve indexing on reference implementation * Get non-reference forward func working * Start rigging beam back up * removing redundant tests, cf #8106 * black formatting * temporarily xfailing issue 4314 * make flake8 happy again * mypy fixes * ensure labels are added upon predict * cleanup remnants from merge conflicts * Improve unseen label masking Two changes to speed up masking by ~10%: - Use a bool array rather than an array of float32. - Let the mask indicate whether a label was seen, rather than unseen. The mask is most frequently used to index scores for seen labels. However, since the mask marked unseen labels, this required computing an intermittent flipped mask. * Write moves costs directly into numpy array (#10163) This avoids elementwise indexing and the allocation of an additional array. Gives a ~15% speed improvement when using batch_by_sequence with size 32. * Temporarily disable ner and rehearse tests Until rehearse is implemented again in the refactored parser. * Fix loss serialization issue (#10600) * Fix loss serialization issue Serialization of a model fails with: TypeError: array(738.3855, dtype=float32) is not JSON serializable Fix this using float conversion. * Disable CI steps that require spacy.TransitionBasedParser.v2 After finishing the refactor, TransitionBasedParser.v2 should be provided for backwards compat. * Add back support for beam parsing to the refactored parser (#10633) * Add back support for beam parsing Beam parsing was already implemented as part of the `BeamBatch` class. This change makes its counterpart `GreedyBatch`. Both classes are hooked up in `TransitionModel`, selecting `GreedyBatch` when the beam size is one, or `BeamBatch` otherwise. * Use kwarg for beam width Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Avoid implicit default for beam_width and beam_density * Parser.{beam,greedy}_parse: ensure labels are added * Remove 'deprecated' comments Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Parser `StateC` optimizations (#10746) * `StateC`: Optimizations Avoid GIL acquisition in `__init__` Increase default buffer capacities on init Reduce C++ exception overhead * Fix typo * Replace `set::count` with `set::find` * Add exception attribute to c'tor * Remove unused import * Use a power-of-two value for initial capacity Use default-insert to init `_heads` and `_unshiftable` * Merge `cdef` variable declarations and assignments * Vectorize `example.get_aligned_parses` (#10789) * `example`: Vectorize `get_aligned_parse` Rename `numpy` import * Convert aligned array to lists before returning * Revert import renaming * Elide slice arguments when selecting the entire range * Tagger/morphologizer alignment performance optimizations (#10798) * `example`: Unwrap `numpy` scalar arrays before passing them to `StringStore.__getitem__` * `AlignmentArray`: Use native list as staging buffer for offset calculation * `example`: Vectorize `get_aligned` * Hoist inner functions out of `get_aligned` * Replace inline `if..else` clause in assignment statement * `AlignmentArray`: Use raw indexing into offset and data `numpy` arrays * `example`: Replace array unique value check with `groupby` * `example`: Correctly exclude tokens with no alignment in `_get_aligned_vectorized` Simplify `_get_aligned_non_vectorized` * `util`: Update `all_equal` docstring * Explicitly use `int32_t*` * Restore C CPU inference in the refactored parser (#10747) * Bring back the C parsing model The C parsing model is used for CPU inference and is still faster for CPU inference than the forward pass of the Thinc model. * Use C sgemm provided by the Ops implementation * Make tb_framework module Cython, merge in C forward implementation * TransitionModel: raise in backprop returned from forward_cpu * Re-enable greedy parse test * Return transition scores when forward_cpu is used * Apply suggestions from code review Import `Model` from `thinc.api` Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Use relative imports in tb_framework * Don't assume a default for beam_width * We don't have a direct dependency on BLIS anymore * Rename forwards to _forward_{fallback,greedy_cpu} * Require thinc >=8.1.0,<8.2.0 * tb_framework: clean up imports * Fix return type of _get_seen_mask * Move up _forward_greedy_cpu * Style fixes. * Lower thinc lowerbound to 8.1.0.dev0 * Formatting fix Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> * Reimplement parser rehearsal function (#10878) * Reimplement parser rehearsal function Before the parser refactor, rehearsal was driven by a loop in the `rehearse` method itself. For each parsing step, the loops would: 1. Get the predictions of the teacher. 2. Get the predictions and backprop function of the student. 3. Compute the loss and backprop into the student. 4. Move the teacher and student forward with the predictions of the student. In the refactored parser, we cannot perform search stepwise rehearsal anymore, since the model now predicts all parsing steps at once. Therefore, rehearsal is performed in the following steps: 1. Get the predictions of all parsing steps from the student, along with its backprop function. 2. Get the predictions from the teacher, but use the predictions of the student to advance the parser while doing so. 3. Compute the loss and backprop into the student. To support the second step a new method, `advance_with_actions` is added to `GreedyBatch`, which performs the provided parsing steps. * tb_framework: wrap upper_W and upper_b in Linear Thinc's Optimizer cannot handle resizing of existing parameters. Until it does, we work around this by wrapping the weights/biases of the upper layer of the parser model in Linear. When the upper layer is resized, we copy over the existing parameters into a new Linear instance. This does not trigger an error in Optimizer, because it sees the resized layer as a new set of parameters. * Add test for TransitionSystem.apply_actions * Better FIXME marker Co-authored-by: Madeesh Kannan <shadeMe@users.noreply.github.com> * Fixes from Madeesh * Apply suggestions from Sofie Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Remove useless assignment Co-authored-by: Madeesh Kannan <shadeMe@users.noreply.github.com> Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Rename some identifiers in the parser refactor (#10935) * Rename _parseC to _parse_batch * tb_framework: prefix many auxiliary functions with underscore To clearly state the intent that they are private. * Rename `lower` to `hidden`, `upper` to `output` * Parser slow test fixup We don't have TransitionBasedParser.{v1,v2} until we bring it back as a legacy option. * Remove last vestiges of PrecomputableAffine This does not exist anymore as a separate layer. * ner: re-enable sentence boundary checks * Re-enable test that works now. * test_ner: make loss test more strict again * Remove commented line * Re-enable some more beam parser tests * Remove unused _forward_reference function * Update for CBlas changes in Thinc 8.1.0.dev2 Bump thinc dependency to 8.1.0.dev3. * Remove references to spacy.TransitionBasedParser.{v1,v2} Since they will not be offered starting with spaCy v4. * `tb_framework`: Replace references to `thinc.backends.linalg` with `CBlas` * dont use get_array_module (#11056) (#11293) Co-authored-by: kadarakos <kadar.akos@gmail.com> * Move `thinc.extra.search` to `spacy.pipeline._parser_internals` (#11317) * `search`: Move from `thinc.extra.search` Fix NPE in `Beam.__dealloc__` * `pytest`: Add support for executing Cython tests Move `search` tests from thinc and patch them to run with `pytest` * `mypy` fix * Update comment * `conftest`: Expose `register_cython_tests` * Remove unused import * Move `argmax` impls to new `_parser_utils` Cython module (#11410) * Parser does not have to be a cdef class anymore This also fixes validation of the initialization schema. * Add back spacy.TransitionBasedParser.v2 * Fix a rename that was missed in #10878. So that rehearsal tests pass. * Remove module from setup.py that got added during the merge * Bring back support for `update_with_oracle_cut_size` (#12086) * Bring back support for `update_with_oracle_cut_size` This option was available in the pre-refactor parser, but was never implemented in the refactored parser. This option cuts transition sequences that are longer than `update_with_oracle_cut` size into separate sequences that have at most `update_with_oracle_cut` transitions. The oracle (gold standard) transition sequence is used to determine the cuts and the initial states for the additional sequences. Applying this cut makes the batches more homogeneous in the transition sequence lengths, making forward passes (and as a consequence training) much faster. Training time 1000 steps on de_core_news_lg: - Before this change: 149s - After this change: 68s - Pre-refactor parser: 81s * Fix a rename that was missed in #10878. So that rehearsal tests pass. * Apply suggestions from @shadeMe * Use chained conditional * Test with update_with_oracle_cut_size={0, 1, 5, 100} And fix a git that occurs with a cut size of 1. * Fix up some merge fall out * Update parser distillation for the refactor In the old parser, we'd iterate over the transitions in the distill function and compute the loss/gradients on the go. In the refactored parser, we first let the student model parse the inputs. Then we'll let the teacher compute the transition probabilities of the states in the student's transition sequence. We can then compute the gradients of the student given the teacher. * Add back spacy.TransitionBasedParser.v1 references - Accordion in the architecture docs. - Test in test_parse, but disabled until we have a spacy-legacy release. Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com> Co-authored-by: svlandeg <svlandeg@github.com> Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: Madeesh Kannan <shadeMe@users.noreply.github.com> Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> Co-authored-by: kadarakos <kadar.akos@gmail.com>
875 lines
30 KiB
Python
875 lines
30 KiB
Python
import random
|
|
|
|
import pytest
|
|
from numpy.testing import assert_equal
|
|
|
|
from spacy.attrs import ENT_IOB
|
|
from spacy import util, registry
|
|
from spacy.lang.en import English
|
|
from spacy.lang.it import Italian
|
|
from spacy.language import Language
|
|
from spacy.lookups import Lookups
|
|
from spacy.pipeline._parser_internals.ner import BiluoPushDown
|
|
from spacy.training import Example, iob_to_biluo, split_bilu_label
|
|
from spacy.tokens import Doc, Span
|
|
from spacy.vocab import Vocab
|
|
from thinc.api import fix_random_seed
|
|
import logging
|
|
|
|
from ..util import make_tempdir
|
|
from ...pipeline import EntityRecognizer
|
|
from ...pipeline.ner import DEFAULT_NER_MODEL
|
|
|
|
TRAIN_DATA = [
|
|
("Who is Shaka Khan?", {"entities": [(7, 17, "PERSON")]}),
|
|
("I like London and Berlin.", {"entities": [(7, 13, "LOC"), (18, 24, "LOC")]}),
|
|
]
|
|
|
|
|
|
@pytest.fixture
|
|
def neg_key():
|
|
return "non_entities"
|
|
|
|
|
|
@pytest.fixture
|
|
def vocab():
|
|
return Vocab()
|
|
|
|
|
|
@pytest.fixture
|
|
def doc(vocab):
|
|
return Doc(vocab, words=["Casey", "went", "to", "New", "York", "."])
|
|
|
|
|
|
@pytest.fixture
|
|
def entity_annots(doc):
|
|
casey = doc[0:1]
|
|
ny = doc[3:5]
|
|
return [
|
|
(casey.start_char, casey.end_char, "PERSON"),
|
|
(ny.start_char, ny.end_char, "GPE"),
|
|
]
|
|
|
|
|
|
@pytest.fixture
|
|
def entity_types(entity_annots):
|
|
return sorted(set([label for (s, e, label) in entity_annots]))
|
|
|
|
|
|
@pytest.fixture
|
|
def tsys(vocab, entity_types):
|
|
actions = BiluoPushDown.get_actions(entity_types=entity_types)
|
|
return BiluoPushDown(vocab.strings, actions)
|
|
|
|
|
|
@pytest.mark.parametrize("label", ["U-JOB-NAME"])
|
|
@pytest.mark.issue(1967)
|
|
def test_issue1967(label):
|
|
nlp = Language()
|
|
config = {}
|
|
ner = nlp.create_pipe("ner", config=config)
|
|
example = Example.from_dict(
|
|
Doc(ner.vocab, words=["word"]),
|
|
{
|
|
"ids": [0],
|
|
"words": ["word"],
|
|
"tags": ["tag"],
|
|
"heads": [0],
|
|
"deps": ["dep"],
|
|
"entities": [label],
|
|
},
|
|
)
|
|
assert "JOB-NAME" in ner.moves.get_actions(examples=[example])[1]
|
|
|
|
|
|
@pytest.mark.issue(2179)
|
|
def test_issue2179():
|
|
"""Test that spurious 'extra_labels' aren't created when initializing NER."""
|
|
nlp = Italian()
|
|
ner = nlp.add_pipe("ner")
|
|
ner.add_label("CITIZENSHIP")
|
|
nlp.initialize()
|
|
nlp2 = Italian()
|
|
nlp2.add_pipe("ner")
|
|
assert len(nlp2.get_pipe("ner").labels) == 0
|
|
model = nlp2.get_pipe("ner").model
|
|
model.attrs["resize_output"](model, nlp.get_pipe("ner").moves.n_moves)
|
|
nlp2.from_bytes(nlp.to_bytes())
|
|
assert "extra_labels" not in nlp2.get_pipe("ner").cfg
|
|
assert nlp2.get_pipe("ner").labels == ("CITIZENSHIP",)
|
|
|
|
|
|
@pytest.mark.issue(2385)
|
|
def test_issue2385():
|
|
"""Test that IOB tags are correctly converted to BILUO tags."""
|
|
# fix bug in labels with a 'b' character
|
|
tags1 = ("B-BRAWLER", "I-BRAWLER", "I-BRAWLER")
|
|
assert iob_to_biluo(tags1) == ["B-BRAWLER", "I-BRAWLER", "L-BRAWLER"]
|
|
# maintain support for iob1 format
|
|
tags2 = ("I-ORG", "I-ORG", "B-ORG")
|
|
assert iob_to_biluo(tags2) == ["B-ORG", "L-ORG", "U-ORG"]
|
|
# maintain support for iob2 format
|
|
tags3 = ("B-PERSON", "I-PERSON", "B-PERSON")
|
|
assert iob_to_biluo(tags3) == ["B-PERSON", "L-PERSON", "U-PERSON"]
|
|
# ensure it works with hyphens in the name
|
|
tags4 = ("B-MULTI-PERSON", "I-MULTI-PERSON", "B-MULTI-PERSON")
|
|
assert iob_to_biluo(tags4) == ["B-MULTI-PERSON", "L-MULTI-PERSON", "U-MULTI-PERSON"]
|
|
|
|
|
|
@pytest.mark.issue(2800)
|
|
def test_issue2800():
|
|
"""Test issue that arises when too many labels are added to NER model.
|
|
Used to cause segfault.
|
|
"""
|
|
nlp = English()
|
|
train_data = []
|
|
train_data.extend(
|
|
[Example.from_dict(nlp.make_doc("One sentence"), {"entities": []})]
|
|
)
|
|
entity_types = [str(i) for i in range(1000)]
|
|
ner = nlp.add_pipe("ner")
|
|
for entity_type in list(entity_types):
|
|
ner.add_label(entity_type)
|
|
optimizer = nlp.initialize()
|
|
for i in range(20):
|
|
losses = {}
|
|
random.shuffle(train_data)
|
|
for example in train_data:
|
|
nlp.update([example], sgd=optimizer, losses=losses, drop=0.5)
|
|
|
|
|
|
@pytest.mark.issue(3209)
|
|
def test_issue3209():
|
|
"""Test issue that occurred in spaCy nightly where NER labels were being
|
|
mapped to classes incorrectly after loading the model, when the labels
|
|
were added using ner.add_label().
|
|
"""
|
|
nlp = English()
|
|
ner = nlp.add_pipe("ner")
|
|
ner.add_label("ANIMAL")
|
|
nlp.initialize()
|
|
move_names = ["O", "B-ANIMAL", "I-ANIMAL", "L-ANIMAL", "U-ANIMAL"]
|
|
assert ner.move_names == move_names
|
|
nlp2 = English()
|
|
ner2 = nlp2.add_pipe("ner")
|
|
model = ner2.model
|
|
model.attrs["resize_output"](model, ner.moves.n_moves)
|
|
nlp2.from_bytes(nlp.to_bytes())
|
|
assert ner2.move_names == move_names
|
|
|
|
|
|
def test_labels_from_BILUO():
|
|
"""Test that labels are inferred correctly when there's a - in label."""
|
|
nlp = English()
|
|
ner = nlp.add_pipe("ner")
|
|
ner.add_label("LARGE-ANIMAL")
|
|
nlp.initialize()
|
|
move_names = [
|
|
"O",
|
|
"B-LARGE-ANIMAL",
|
|
"I-LARGE-ANIMAL",
|
|
"L-LARGE-ANIMAL",
|
|
"U-LARGE-ANIMAL",
|
|
]
|
|
labels = {"LARGE-ANIMAL"}
|
|
assert ner.move_names == move_names
|
|
assert set(ner.labels) == labels
|
|
|
|
|
|
@pytest.mark.issue(4267)
|
|
def test_issue4267():
|
|
"""Test that running an entity_ruler after ner gives consistent results"""
|
|
nlp = English()
|
|
ner = nlp.add_pipe("ner")
|
|
ner.add_label("PEOPLE")
|
|
nlp.initialize()
|
|
assert "ner" in nlp.pipe_names
|
|
# assert that we have correct IOB annotations
|
|
doc1 = nlp("hi")
|
|
assert doc1.has_annotation("ENT_IOB")
|
|
for token in doc1:
|
|
assert token.ent_iob == 2
|
|
# add entity ruler and run again
|
|
patterns = [{"label": "SOFTWARE", "pattern": "spacy"}]
|
|
ruler = nlp.add_pipe("entity_ruler")
|
|
ruler.add_patterns(patterns)
|
|
assert "entity_ruler" in nlp.pipe_names
|
|
assert "ner" in nlp.pipe_names
|
|
# assert that we still have correct IOB annotations
|
|
doc2 = nlp("hi")
|
|
assert doc2.has_annotation("ENT_IOB")
|
|
for token in doc2:
|
|
assert token.ent_iob == 2
|
|
|
|
|
|
@pytest.mark.issue(4313)
|
|
def test_issue4313():
|
|
"""This should not crash or exit with some strange error code"""
|
|
beam_width = 16
|
|
beam_density = 0.0001
|
|
nlp = English()
|
|
config = {
|
|
"beam_width": beam_width,
|
|
"beam_density": beam_density,
|
|
}
|
|
ner = nlp.add_pipe("beam_ner", config=config)
|
|
ner.add_label("SOME_LABEL")
|
|
nlp.initialize()
|
|
# add a new label to the doc
|
|
doc = nlp("What do you think about Apple ?")
|
|
assert len(ner.labels) == 1
|
|
assert "SOME_LABEL" in ner.labels
|
|
apple_ent = Span(doc, 5, 6, label="MY_ORG")
|
|
doc.ents = list(doc.ents) + [apple_ent]
|
|
|
|
# ensure the beam_parse still works with the new label
|
|
docs = [doc]
|
|
ner.beam_parse(docs, drop=0.0, beam_width=beam_width, beam_density=beam_density)
|
|
assert len(ner.labels) == 2
|
|
assert "MY_ORG" in ner.labels
|
|
|
|
|
|
def test_get_oracle_moves(tsys, doc, entity_annots):
|
|
example = Example.from_dict(doc, {"entities": entity_annots})
|
|
act_classes = tsys.get_oracle_sequence(example, _debug=False)
|
|
names = [tsys.get_class_name(act) for act in act_classes]
|
|
assert names == ["U-PERSON", "O", "O", "B-GPE", "L-GPE", "O"]
|
|
|
|
|
|
def test_negative_samples_two_word_input(tsys, vocab, neg_key):
|
|
"""Test that we don't get stuck in a two word input when we have a negative
|
|
span. This could happen if we don't have the right check on the B action.
|
|
"""
|
|
tsys.cfg["neg_key"] = neg_key
|
|
doc = Doc(vocab, words=["A", "B"])
|
|
entity_annots = [None, None]
|
|
example = Example.from_dict(doc, {"entities": entity_annots})
|
|
# These mean that the oracle sequence shouldn't have O for the first
|
|
# word, and it shouldn't analyse it as B-PERSON, L-PERSON
|
|
example.y.spans[neg_key] = [
|
|
Span(example.y, 0, 1, label="O"),
|
|
Span(example.y, 0, 2, label="PERSON"),
|
|
]
|
|
act_classes = tsys.get_oracle_sequence(example)
|
|
names = [tsys.get_class_name(act) for act in act_classes]
|
|
assert names
|
|
assert names[0] != "O"
|
|
assert names[0] != "B-PERSON"
|
|
assert names[1] != "L-PERSON"
|
|
|
|
|
|
def test_negative_samples_three_word_input(tsys, vocab, neg_key):
|
|
"""Test that we exclude a 2-word entity correctly using a negative example."""
|
|
tsys.cfg["neg_key"] = neg_key
|
|
doc = Doc(vocab, words=["A", "B", "C"])
|
|
entity_annots = [None, None, None]
|
|
example = Example.from_dict(doc, {"entities": entity_annots})
|
|
# These mean that the oracle sequence shouldn't have O for the first
|
|
# word, and it shouldn't analyse it as B-PERSON, L-PERSON
|
|
example.y.spans[neg_key] = [
|
|
Span(example.y, 0, 1, label="O"),
|
|
Span(example.y, 0, 2, label="PERSON"),
|
|
]
|
|
act_classes = tsys.get_oracle_sequence(example)
|
|
names = [tsys.get_class_name(act) for act in act_classes]
|
|
assert names
|
|
assert names[0] != "O"
|
|
assert names[1] != "B-PERSON"
|
|
|
|
|
|
def test_negative_samples_U_entity(tsys, vocab, neg_key):
|
|
"""Test that we exclude a 2-word entity correctly using a negative example."""
|
|
tsys.cfg["neg_key"] = neg_key
|
|
doc = Doc(vocab, words=["A"])
|
|
entity_annots = [None]
|
|
example = Example.from_dict(doc, {"entities": entity_annots})
|
|
# These mean that the oracle sequence shouldn't have O for the first
|
|
# word, and it shouldn't analyse it as B-PERSON, L-PERSON
|
|
example.y.spans[neg_key] = [
|
|
Span(example.y, 0, 1, label="O"),
|
|
Span(example.y, 0, 1, label="PERSON"),
|
|
]
|
|
act_classes = tsys.get_oracle_sequence(example)
|
|
names = [tsys.get_class_name(act) for act in act_classes]
|
|
assert names
|
|
assert names[0] != "O"
|
|
assert names[0] != "U-PERSON"
|
|
|
|
|
|
def test_negative_sample_key_is_in_config(vocab, entity_types):
|
|
actions = BiluoPushDown.get_actions(entity_types=entity_types)
|
|
tsys = BiluoPushDown(vocab.strings, actions, incorrect_spans_key="non_entities")
|
|
assert tsys.cfg["neg_key"] == "non_entities"
|
|
|
|
|
|
# We can't easily represent this on a Doc object. Not sure what the best solution
|
|
# would be, but I don't think it's an important use case?
|
|
@pytest.mark.skip(reason="No longer supported")
|
|
def test_oracle_moves_missing_B(en_vocab):
|
|
words = ["B", "52", "Bomber"]
|
|
biluo_tags = [None, None, "L-PRODUCT"]
|
|
|
|
doc = Doc(en_vocab, words=words)
|
|
example = Example.from_dict(doc, {"words": words, "entities": biluo_tags})
|
|
|
|
moves = BiluoPushDown(en_vocab.strings)
|
|
move_types = ("M", "B", "I", "L", "U", "O")
|
|
for tag in biluo_tags:
|
|
if tag is None:
|
|
continue
|
|
elif tag == "O":
|
|
moves.add_action(move_types.index("O"), "")
|
|
else:
|
|
action, label = split_bilu_label(tag)
|
|
moves.add_action(move_types.index("B"), label)
|
|
moves.add_action(move_types.index("I"), label)
|
|
moves.add_action(move_types.index("L"), label)
|
|
moves.add_action(move_types.index("U"), label)
|
|
moves.get_oracle_sequence(example)
|
|
|
|
|
|
# We can't easily represent this on a Doc object. Not sure what the best solution
|
|
# would be, but I don't think it's an important use case?
|
|
@pytest.mark.skip(reason="No longer supported")
|
|
def test_oracle_moves_whitespace(en_vocab):
|
|
words = ["production", "\n", "of", "Northrop", "\n", "Corp.", "\n", "'s", "radar"]
|
|
biluo_tags = ["O", "O", "O", "B-ORG", None, "I-ORG", "L-ORG", "O", "O"]
|
|
|
|
doc = Doc(en_vocab, words=words)
|
|
example = Example.from_dict(doc, {"entities": biluo_tags})
|
|
|
|
moves = BiluoPushDown(en_vocab.strings)
|
|
move_types = ("M", "B", "I", "L", "U", "O")
|
|
for tag in biluo_tags:
|
|
if tag is None:
|
|
continue
|
|
elif tag == "O":
|
|
moves.add_action(move_types.index("O"), "")
|
|
else:
|
|
action, label = split_bilu_label(tag)
|
|
moves.add_action(move_types.index(action), label)
|
|
moves.get_oracle_sequence(example)
|
|
|
|
|
|
def test_accept_blocked_token():
|
|
"""Test succesful blocking of tokens to be in an entity."""
|
|
# 1. test normal behaviour
|
|
nlp1 = English()
|
|
doc1 = nlp1("I live in New York")
|
|
config = {}
|
|
ner1 = nlp1.create_pipe("ner", config=config)
|
|
assert [token.ent_iob_ for token in doc1] == ["", "", "", "", ""]
|
|
assert [token.ent_type_ for token in doc1] == ["", "", "", "", ""]
|
|
|
|
# Add the OUT action
|
|
ner1.moves.add_action(5, "")
|
|
ner1.add_label("GPE")
|
|
# Get into the state just before "New"
|
|
state1 = ner1.moves.init_batch([doc1])[0]
|
|
ner1.moves.apply_transition(state1, "O")
|
|
ner1.moves.apply_transition(state1, "O")
|
|
ner1.moves.apply_transition(state1, "O")
|
|
# Check that B-GPE is valid.
|
|
assert ner1.moves.is_valid(state1, "B-GPE")
|
|
|
|
# 2. test blocking behaviour
|
|
nlp2 = English()
|
|
doc2 = nlp2("I live in New York")
|
|
config = {}
|
|
ner2 = nlp2.create_pipe("ner", config=config)
|
|
|
|
# set "New York" to a blocked entity
|
|
doc2.set_ents([], blocked=[doc2[3:5]], default="unmodified")
|
|
assert [token.ent_iob_ for token in doc2] == ["", "", "", "B", "B"]
|
|
assert [token.ent_type_ for token in doc2] == ["", "", "", "", ""]
|
|
|
|
# Check that B-GPE is now invalid.
|
|
ner2.moves.add_action(4, "")
|
|
ner2.moves.add_action(5, "")
|
|
ner2.add_label("GPE")
|
|
state2 = ner2.moves.init_batch([doc2])[0]
|
|
ner2.moves.apply_transition(state2, "O")
|
|
ner2.moves.apply_transition(state2, "O")
|
|
ner2.moves.apply_transition(state2, "O")
|
|
# we can only use U- for "New"
|
|
assert not ner2.moves.is_valid(state2, "B-GPE")
|
|
assert ner2.moves.is_valid(state2, "U-")
|
|
ner2.moves.apply_transition(state2, "U-")
|
|
# we can only use U- for "York"
|
|
assert not ner2.moves.is_valid(state2, "B-GPE")
|
|
assert ner2.moves.is_valid(state2, "U-")
|
|
|
|
|
|
def test_train_empty():
|
|
"""Test that training an empty text does not throw errors."""
|
|
train_data = [
|
|
("Who is Shaka Khan?", {"entities": [(7, 17, "PERSON")]}),
|
|
("", {"entities": []}),
|
|
]
|
|
|
|
nlp = English()
|
|
train_examples = []
|
|
for t in train_data:
|
|
train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
|
|
ner = nlp.add_pipe("ner", last=True)
|
|
ner.add_label("PERSON")
|
|
nlp.initialize(get_examples=lambda: train_examples)
|
|
for itn in range(2):
|
|
losses = {}
|
|
batches = util.minibatch(train_examples, size=8)
|
|
for batch in batches:
|
|
nlp.update(batch, losses=losses)
|
|
|
|
|
|
def test_train_negative_deprecated():
|
|
"""Test that the deprecated negative entity format raises a custom error."""
|
|
train_data = [
|
|
("Who is Shaka Khan?", {"entities": [(7, 17, "!PERSON")]}),
|
|
]
|
|
|
|
nlp = English()
|
|
train_examples = []
|
|
for t in train_data:
|
|
train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
|
|
ner = nlp.add_pipe("ner", last=True)
|
|
ner.add_label("PERSON")
|
|
nlp.initialize()
|
|
for itn in range(2):
|
|
losses = {}
|
|
batches = util.minibatch(train_examples, size=8)
|
|
for batch in batches:
|
|
with pytest.raises(ValueError):
|
|
nlp.update(batch, losses=losses)
|
|
|
|
|
|
def test_overwrite_token():
|
|
nlp = English()
|
|
nlp.add_pipe("ner")
|
|
nlp.initialize()
|
|
# The untrained NER will predict O for each token
|
|
doc = nlp("I live in New York")
|
|
assert [token.ent_iob_ for token in doc] == ["O", "O", "O", "O", "O"]
|
|
assert [token.ent_type_ for token in doc] == ["", "", "", "", ""]
|
|
# Check that a new ner can overwrite O
|
|
config = {}
|
|
ner2 = nlp.create_pipe("ner", config=config)
|
|
ner2.moves.add_action(5, "")
|
|
ner2.add_label("GPE")
|
|
state = ner2.moves.init_batch([doc])[0]
|
|
assert ner2.moves.is_valid(state, "B-GPE")
|
|
assert ner2.moves.is_valid(state, "U-GPE")
|
|
ner2.moves.apply_transition(state, "B-GPE")
|
|
assert ner2.moves.is_valid(state, "I-GPE")
|
|
assert ner2.moves.is_valid(state, "L-GPE")
|
|
|
|
|
|
def test_empty_ner():
|
|
nlp = English()
|
|
ner = nlp.add_pipe("ner")
|
|
ner.add_label("MY_LABEL")
|
|
nlp.initialize()
|
|
doc = nlp("John is watching the news about Croatia's elections")
|
|
# if this goes wrong, the initialization of the parser's upper layer is probably broken
|
|
result = ["O", "O", "O", "O", "O", "O", "O", "O", "O"]
|
|
assert [token.ent_iob_ for token in doc] == result
|
|
|
|
|
|
def test_ruler_before_ner():
|
|
"""Test that an NER works after an entity_ruler: the second can add annotations"""
|
|
nlp = English()
|
|
|
|
# 1 : Entity Ruler - should set "this" to B and everything else to empty
|
|
patterns = [{"label": "THING", "pattern": "This"}]
|
|
ruler = nlp.add_pipe("entity_ruler")
|
|
|
|
# 2: untrained NER - should set everything else to O
|
|
untrained_ner = nlp.add_pipe("ner")
|
|
untrained_ner.add_label("MY_LABEL")
|
|
nlp.initialize()
|
|
ruler.add_patterns(patterns)
|
|
doc = nlp("This is Antti Korhonen speaking in Finland")
|
|
expected_iobs = ["B", "O", "O", "O", "O", "O", "O"]
|
|
expected_types = ["THING", "", "", "", "", "", ""]
|
|
assert [token.ent_iob_ for token in doc] == expected_iobs
|
|
assert [token.ent_type_ for token in doc] == expected_types
|
|
|
|
|
|
def test_ner_constructor(en_vocab):
|
|
config = {
|
|
"update_with_oracle_cut_size": 100,
|
|
}
|
|
cfg = {"model": DEFAULT_NER_MODEL}
|
|
model = registry.resolve(cfg, validate=True)["model"]
|
|
EntityRecognizer(en_vocab, model, **config)
|
|
EntityRecognizer(en_vocab, model)
|
|
|
|
|
|
def test_ner_before_ruler():
|
|
"""Test that an entity_ruler works after an NER: the second can overwrite O annotations"""
|
|
nlp = English()
|
|
|
|
# 1: untrained NER - should set everything to O
|
|
untrained_ner = nlp.add_pipe("ner", name="uner")
|
|
untrained_ner.add_label("MY_LABEL")
|
|
nlp.initialize()
|
|
|
|
# 2 : Entity Ruler - should set "this" to B and keep everything else O
|
|
patterns = [{"label": "THING", "pattern": "This"}]
|
|
ruler = nlp.add_pipe("entity_ruler")
|
|
ruler.add_patterns(patterns)
|
|
|
|
doc = nlp("This is Antti Korhonen speaking in Finland")
|
|
expected_iobs = ["B", "O", "O", "O", "O", "O", "O"]
|
|
expected_types = ["THING", "", "", "", "", "", ""]
|
|
assert [token.ent_iob_ for token in doc] == expected_iobs
|
|
assert [token.ent_type_ for token in doc] == expected_types
|
|
|
|
|
|
def test_block_ner():
|
|
"""Test functionality for blocking tokens so they can't be in a named entity"""
|
|
# block "Antti L Korhonen" from being a named entity
|
|
nlp = English()
|
|
nlp.add_pipe("blocker", config={"start": 2, "end": 5})
|
|
untrained_ner = nlp.add_pipe("ner")
|
|
untrained_ner.add_label("MY_LABEL")
|
|
nlp.initialize()
|
|
doc = nlp("This is Antti L Korhonen speaking in Finland")
|
|
expected_iobs = ["O", "O", "B", "B", "B", "O", "O", "O"]
|
|
expected_types = ["", "", "", "", "", "", "", ""]
|
|
assert [token.ent_iob_ for token in doc] == expected_iobs
|
|
assert [token.ent_type_ for token in doc] == expected_types
|
|
|
|
|
|
def test_overfitting_IO():
|
|
fix_random_seed(1)
|
|
# Simple test to try and quickly overfit the NER component
|
|
nlp = English()
|
|
ner = nlp.add_pipe("ner", config={"model": {}})
|
|
train_examples = []
|
|
for text, annotations in TRAIN_DATA:
|
|
train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
|
|
for ent in annotations.get("entities"):
|
|
ner.add_label(ent[2])
|
|
optimizer = nlp.initialize()
|
|
|
|
for i in range(50):
|
|
losses = {}
|
|
nlp.update(train_examples, sgd=optimizer, losses=losses)
|
|
assert losses["ner"] < 0.00001
|
|
|
|
# test the trained model
|
|
test_text = "I like London."
|
|
doc = nlp(test_text)
|
|
ents = doc.ents
|
|
assert len(ents) == 1
|
|
assert ents[0].text == "London"
|
|
assert ents[0].label_ == "LOC"
|
|
|
|
# Also test the results are still the same after IO
|
|
with make_tempdir() as tmp_dir:
|
|
nlp.to_disk(tmp_dir)
|
|
nlp2 = util.load_model_from_path(tmp_dir)
|
|
doc2 = nlp2(test_text)
|
|
ents2 = doc2.ents
|
|
assert len(ents2) == 1
|
|
assert ents2[0].text == "London"
|
|
assert ents2[0].label_ == "LOC"
|
|
# Ensure that the predictions are still the same, even after adding a new label
|
|
ner2 = nlp2.get_pipe("ner")
|
|
ner2.add_label("RANDOM_NEW_LABEL")
|
|
doc3 = nlp2(test_text)
|
|
ents3 = doc3.ents
|
|
assert len(ents3) == 1
|
|
assert ents3[0].text == "London"
|
|
assert ents3[0].label_ == "LOC"
|
|
|
|
# Make sure that running pipe twice, or comparing to call, always amounts to the same predictions
|
|
texts = [
|
|
"Just a sentence.",
|
|
"Then one more sentence about London.",
|
|
"Here is another one.",
|
|
"I like London.",
|
|
]
|
|
batch_deps_1 = [doc.to_array([ENT_IOB]) for doc in nlp.pipe(texts)]
|
|
batch_deps_2 = [doc.to_array([ENT_IOB]) for doc in nlp.pipe(texts)]
|
|
no_batch_deps = [doc.to_array([ENT_IOB]) for doc in [nlp(text) for text in texts]]
|
|
assert_equal(batch_deps_1, batch_deps_2)
|
|
assert_equal(batch_deps_1, no_batch_deps)
|
|
|
|
# test that kb_id is preserved
|
|
test_text = "I like London and London."
|
|
doc = nlp.make_doc(test_text)
|
|
doc.ents = [Span(doc, 2, 3, label="LOC", kb_id=1234)]
|
|
ents = doc.ents
|
|
assert len(ents) == 1
|
|
assert ents[0].text == "London"
|
|
assert ents[0].label_ == "LOC"
|
|
assert ents[0].kb_id == 1234
|
|
doc = nlp.get_pipe("ner")(doc)
|
|
ents = doc.ents
|
|
assert len(ents) == 2
|
|
assert ents[0].text == "London"
|
|
assert ents[0].label_ == "LOC"
|
|
assert ents[0].kb_id == 1234
|
|
# ent added by ner has kb_id == 0
|
|
assert ents[1].text == "London"
|
|
assert ents[1].label_ == "LOC"
|
|
assert ents[1].kb_id == 0
|
|
|
|
|
|
def test_is_distillable():
|
|
nlp = English()
|
|
ner = nlp.add_pipe("ner")
|
|
assert ner.is_distillable
|
|
|
|
|
|
def test_distill():
|
|
teacher = English()
|
|
teacher_ner = teacher.add_pipe("ner")
|
|
train_examples = []
|
|
for text, annotations in TRAIN_DATA:
|
|
train_examples.append(Example.from_dict(teacher.make_doc(text), annotations))
|
|
for ent in annotations.get("entities"):
|
|
teacher_ner.add_label(ent[2])
|
|
|
|
optimizer = teacher.initialize(get_examples=lambda: train_examples)
|
|
|
|
for i in range(50):
|
|
losses = {}
|
|
teacher.update(train_examples, sgd=optimizer, losses=losses)
|
|
assert losses["ner"] < 0.00001
|
|
|
|
student = English()
|
|
student_ner = student.add_pipe("ner")
|
|
student_ner.initialize(
|
|
get_examples=lambda: train_examples, labels=teacher_ner.label_data
|
|
)
|
|
|
|
distill_examples = [
|
|
Example.from_dict(teacher.make_doc(t[0]), {}) for t in TRAIN_DATA
|
|
]
|
|
|
|
for i in range(100):
|
|
losses = {}
|
|
student_ner.distill(teacher_ner, distill_examples, sgd=optimizer, losses=losses)
|
|
assert losses["ner"] < 0.0001
|
|
|
|
# test the trained model
|
|
test_text = "I like London."
|
|
doc = student(test_text)
|
|
ents = doc.ents
|
|
assert len(ents) == 1
|
|
assert ents[0].text == "London"
|
|
assert ents[0].label_ == "LOC"
|
|
|
|
|
|
def test_beam_ner_scores():
|
|
# Test that we can get confidence values out of the beam_ner pipe
|
|
beam_width = 16
|
|
beam_density = 0.0001
|
|
nlp = English()
|
|
config = {
|
|
"beam_width": beam_width,
|
|
"beam_density": beam_density,
|
|
}
|
|
ner = nlp.add_pipe("beam_ner", config=config)
|
|
train_examples = []
|
|
for text, annotations in TRAIN_DATA:
|
|
train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
|
|
for ent in annotations.get("entities"):
|
|
ner.add_label(ent[2])
|
|
optimizer = nlp.initialize()
|
|
|
|
# update once
|
|
losses = {}
|
|
nlp.update(train_examples, sgd=optimizer, losses=losses)
|
|
|
|
# test the scores from the beam
|
|
test_text = "I like London."
|
|
doc = nlp.make_doc(test_text)
|
|
docs = [doc]
|
|
beams = ner.predict(docs)
|
|
entity_scores = ner.scored_ents(beams)[0]
|
|
|
|
for j in range(len(doc)):
|
|
for label in ner.labels:
|
|
score = entity_scores[(j, j + 1, label)]
|
|
eps = 0.00001
|
|
assert 0 - eps <= score <= 1 + eps
|
|
|
|
|
|
def test_beam_overfitting_IO(neg_key):
|
|
# Simple test to try and quickly overfit the Beam NER component
|
|
nlp = English()
|
|
beam_width = 16
|
|
beam_density = 0.0001
|
|
config = {
|
|
"beam_width": beam_width,
|
|
"beam_density": beam_density,
|
|
"incorrect_spans_key": neg_key,
|
|
}
|
|
ner = nlp.add_pipe("beam_ner", config=config)
|
|
train_examples = []
|
|
for text, annotations in TRAIN_DATA:
|
|
train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
|
|
for ent in annotations.get("entities"):
|
|
ner.add_label(ent[2])
|
|
optimizer = nlp.initialize()
|
|
|
|
# run overfitting
|
|
for i in range(50):
|
|
losses = {}
|
|
nlp.update(train_examples, sgd=optimizer, losses=losses)
|
|
assert losses["beam_ner"] < 0.0001
|
|
|
|
# test the scores from the beam
|
|
test_text = "I like London"
|
|
docs = [nlp.make_doc(test_text)]
|
|
beams = ner.predict(docs)
|
|
entity_scores = ner.scored_ents(beams)[0]
|
|
assert entity_scores[(2, 3, "LOC")] == 1.0
|
|
assert entity_scores[(2, 3, "PERSON")] == 0.0
|
|
assert len(nlp(test_text).ents) == 1
|
|
|
|
# Also test the results are still the same after IO
|
|
with make_tempdir() as tmp_dir:
|
|
nlp.to_disk(tmp_dir)
|
|
nlp2 = util.load_model_from_path(tmp_dir)
|
|
docs2 = [nlp2.make_doc(test_text)]
|
|
ner2 = nlp2.get_pipe("beam_ner")
|
|
beams2 = ner2.predict(docs2)
|
|
entity_scores2 = ner2.scored_ents(beams2)[0]
|
|
assert entity_scores2[(2, 3, "LOC")] == 1.0
|
|
assert entity_scores2[(2, 3, "PERSON")] == 0.0
|
|
|
|
# Try to unlearn the entity by using negative annotations
|
|
neg_doc = nlp.make_doc(test_text)
|
|
neg_ex = Example(neg_doc, neg_doc)
|
|
neg_ex.reference.spans[neg_key] = [Span(neg_doc, 2, 3, "LOC")]
|
|
neg_train_examples = [neg_ex]
|
|
|
|
for i in range(20):
|
|
losses = {}
|
|
nlp.update(neg_train_examples, sgd=optimizer, losses=losses)
|
|
|
|
# test the "untrained" model
|
|
assert len(nlp(test_text).ents) == 0
|
|
|
|
|
|
def test_neg_annotation(neg_key):
|
|
"""Check that the NER update works with a negative annotation that is a different label of the correct one,
|
|
or partly overlapping, etc"""
|
|
nlp = English()
|
|
beam_width = 16
|
|
beam_density = 0.0001
|
|
config = {
|
|
"beam_width": beam_width,
|
|
"beam_density": beam_density,
|
|
"incorrect_spans_key": neg_key,
|
|
}
|
|
ner = nlp.add_pipe("beam_ner", config=config)
|
|
train_text = "Who is Shaka Khan?"
|
|
neg_doc = nlp.make_doc(train_text)
|
|
ner.add_label("PERSON")
|
|
ner.add_label("ORG")
|
|
example = Example.from_dict(neg_doc, {"entities": [(7, 17, "PERSON")]})
|
|
example.reference.spans[neg_key] = [
|
|
Span(neg_doc, 2, 4, "ORG"),
|
|
Span(neg_doc, 2, 3, "PERSON"),
|
|
Span(neg_doc, 1, 4, "PERSON"),
|
|
]
|
|
|
|
optimizer = nlp.initialize()
|
|
for i in range(2):
|
|
losses = {}
|
|
nlp.update([example], sgd=optimizer, losses=losses)
|
|
|
|
|
|
def test_neg_annotation_conflict(neg_key):
|
|
# Check that NER raises for a negative annotation that is THE SAME as a correct one
|
|
nlp = English()
|
|
beam_width = 16
|
|
beam_density = 0.0001
|
|
config = {
|
|
"beam_width": beam_width,
|
|
"beam_density": beam_density,
|
|
"incorrect_spans_key": neg_key,
|
|
}
|
|
ner = nlp.add_pipe("beam_ner", config=config)
|
|
train_text = "Who is Shaka Khan?"
|
|
neg_doc = nlp.make_doc(train_text)
|
|
ner.add_label("PERSON")
|
|
ner.add_label("LOC")
|
|
example = Example.from_dict(neg_doc, {"entities": [(7, 17, "PERSON")]})
|
|
example.reference.spans[neg_key] = [Span(neg_doc, 2, 4, "PERSON")]
|
|
assert len(example.reference.ents) == 1
|
|
assert example.reference.ents[0].text == "Shaka Khan"
|
|
assert example.reference.ents[0].label_ == "PERSON"
|
|
assert len(example.reference.spans[neg_key]) == 1
|
|
assert example.reference.spans[neg_key][0].text == "Shaka Khan"
|
|
assert example.reference.spans[neg_key][0].label_ == "PERSON"
|
|
|
|
optimizer = nlp.initialize()
|
|
for i in range(2):
|
|
losses = {}
|
|
with pytest.raises(ValueError):
|
|
nlp.update([example], sgd=optimizer, losses=losses)
|
|
|
|
|
|
def test_beam_valid_parse(neg_key):
|
|
"""Regression test for previously flakey behaviour"""
|
|
nlp = English()
|
|
beam_width = 16
|
|
beam_density = 0.0001
|
|
config = {
|
|
"beam_width": beam_width,
|
|
"beam_density": beam_density,
|
|
"incorrect_spans_key": neg_key,
|
|
}
|
|
nlp.add_pipe("beam_ner", config=config)
|
|
# fmt: off
|
|
tokens = ['FEDERAL', 'NATIONAL', 'MORTGAGE', 'ASSOCIATION', '(', 'Fannie', 'Mae', '):', 'Posted', 'yields', 'on', '30', 'year', 'mortgage', 'commitments', 'for', 'delivery', 'within', '30', 'days', '(', 'priced', 'at', 'par', ')', '9.75', '%', ',', 'standard', 'conventional', 'fixed', '-', 'rate', 'mortgages', ';', '8.70', '%', ',', '6/2', 'rate', 'capped', 'one', '-', 'year', 'adjustable', 'rate', 'mortgages', '.', 'Source', ':', 'Telerate', 'Systems', 'Inc.']
|
|
iob = ['B-ORG', 'I-ORG', 'I-ORG', 'L-ORG', 'O', 'B-ORG', 'L-ORG', 'O', 'O', 'O', 'O', 'B-DATE', 'L-DATE', 'O', 'O', 'O', 'O', 'O', 'B-DATE', 'L-DATE', 'O', 'O', 'O', 'O', 'O', 'B-PERCENT', 'L-PERCENT', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B-PERCENT', 'L-PERCENT', 'O', 'U-CARDINAL', 'O', 'O', 'B-DATE', 'I-DATE', 'L-DATE', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O']
|
|
# fmt: on
|
|
|
|
doc = Doc(nlp.vocab, words=tokens)
|
|
example = Example.from_dict(doc, {"ner": iob})
|
|
neg_span = Span(doc, 50, 53, "ORG")
|
|
example.reference.spans[neg_key] = [neg_span]
|
|
|
|
optimizer = nlp.initialize()
|
|
|
|
for i in range(5):
|
|
losses = {}
|
|
nlp.update([example], sgd=optimizer, losses=losses)
|
|
assert "beam_ner" in losses
|
|
|
|
|
|
def test_ner_warns_no_lookups(caplog):
|
|
nlp = English()
|
|
assert nlp.lang in util.LEXEME_NORM_LANGS
|
|
nlp.vocab.lookups = Lookups()
|
|
assert not len(nlp.vocab.lookups)
|
|
nlp.add_pipe("ner")
|
|
with caplog.at_level(logging.DEBUG):
|
|
nlp.initialize()
|
|
assert "W033" in caplog.text
|
|
caplog.clear()
|
|
nlp.vocab.lookups.add_table("lexeme_norm")
|
|
nlp.vocab.lookups.get_table("lexeme_norm")["a"] = "A"
|
|
with caplog.at_level(logging.DEBUG):
|
|
nlp.initialize()
|
|
assert "W033" not in caplog.text
|
|
|
|
|
|
@Language.factory("blocker")
|
|
class BlockerComponent1:
|
|
def __init__(self, nlp, start, end, name="my_blocker"):
|
|
self.start = start
|
|
self.end = end
|
|
self.name = name
|
|
|
|
def __call__(self, doc):
|
|
doc.set_ents([], blocked=[doc[self.start : self.end]], default="unmodified")
|
|
return doc
|