mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-04 06:16:33 +03:00
9e0322de1a
In the v3 scorer refactoring, `token_acc` was implemented incorrectly. It should use `precision` instead of `fscore` for the measure of correctly aligned tokens / number of predicted tokens. Fix the docs to reflect that the measure uses the number of predicted tokens rather than the number of gold tokens.
524 lines
16 KiB
Python
524 lines
16 KiB
Python
from numpy.testing import assert_almost_equal, assert_array_almost_equal
|
|
import pytest
|
|
from pytest import approx
|
|
from spacy.training import Example
|
|
from spacy.training.iob_utils import offsets_to_biluo_tags
|
|
from spacy.scorer import Scorer, ROCAUCScore, PRFScore
|
|
from spacy.scorer import _roc_auc_score, _roc_curve
|
|
from spacy.lang.en import English
|
|
from spacy.tokens import Doc, Span
|
|
|
|
|
|
test_las_apple = [
|
|
[
|
|
"Apple is looking at buying U.K. startup for $ 1 billion",
|
|
{
|
|
"heads": [2, 2, 2, 2, 3, 6, 4, 4, 10, 10, 7],
|
|
"deps": [
|
|
"nsubj",
|
|
"aux",
|
|
"ROOT",
|
|
"prep",
|
|
"pcomp",
|
|
"compound",
|
|
"dobj",
|
|
"prep",
|
|
"quantmod",
|
|
"compound",
|
|
"pobj",
|
|
],
|
|
},
|
|
]
|
|
]
|
|
|
|
test_ner_cardinal = [
|
|
["100 - 200", {"entities": [[0, 3, "CARDINAL"], [6, 9, "CARDINAL"]]}]
|
|
]
|
|
|
|
test_ner_apple = [
|
|
[
|
|
"Apple is looking at buying U.K. startup for $1 billion",
|
|
{"entities": [(0, 5, "ORG"), (27, 31, "GPE"), (44, 54, "MONEY")]},
|
|
]
|
|
]
|
|
|
|
|
|
@pytest.fixture
|
|
def tagged_doc():
|
|
text = "Sarah's sister flew to Silicon Valley via London."
|
|
tags = ["NNP", "POS", "NN", "VBD", "IN", "NNP", "NNP", "IN", "NNP", "."]
|
|
pos = [
|
|
"PROPN",
|
|
"PART",
|
|
"NOUN",
|
|
"VERB",
|
|
"ADP",
|
|
"PROPN",
|
|
"PROPN",
|
|
"ADP",
|
|
"PROPN",
|
|
"PUNCT",
|
|
]
|
|
morphs = [
|
|
"NounType=prop|Number=sing",
|
|
"Poss=yes",
|
|
"Number=sing",
|
|
"Tense=past|VerbForm=fin",
|
|
"",
|
|
"NounType=prop|Number=sing",
|
|
"NounType=prop|Number=sing",
|
|
"",
|
|
"NounType=prop|Number=sing",
|
|
"PunctType=peri",
|
|
]
|
|
nlp = English()
|
|
doc = nlp(text)
|
|
for i in range(len(tags)):
|
|
doc[i].tag_ = tags[i]
|
|
doc[i].pos_ = pos[i]
|
|
doc[i].set_morph(morphs[i])
|
|
if i > 0:
|
|
doc[i].is_sent_start = False
|
|
return doc
|
|
|
|
|
|
@pytest.fixture
|
|
def sented_doc():
|
|
text = "One sentence. Two sentences. Three sentences."
|
|
nlp = English()
|
|
doc = nlp(text)
|
|
for i in range(len(doc)):
|
|
if i % 3 == 0:
|
|
doc[i].is_sent_start = True
|
|
else:
|
|
doc[i].is_sent_start = False
|
|
return doc
|
|
|
|
|
|
def test_tokenization(sented_doc):
|
|
scorer = Scorer()
|
|
gold = {"sent_starts": [t.sent_start for t in sented_doc]}
|
|
example = Example.from_dict(sented_doc, gold)
|
|
scores = scorer.score([example])
|
|
assert scores["token_acc"] == 1.0
|
|
|
|
nlp = English()
|
|
example.predicted = Doc(
|
|
nlp.vocab,
|
|
words=["One", "sentence.", "Two", "sentences.", "Three", "sentences."],
|
|
spaces=[True, True, True, True, True, False],
|
|
)
|
|
example.predicted[1].is_sent_start = False
|
|
scores = scorer.score([example])
|
|
assert scores["token_acc"] == 0.5
|
|
assert scores["token_p"] == 0.5
|
|
assert scores["token_r"] == approx(0.33333333)
|
|
assert scores["token_f"] == 0.4
|
|
|
|
|
|
def test_sents(sented_doc):
|
|
scorer = Scorer()
|
|
gold = {"sent_starts": [t.sent_start for t in sented_doc]}
|
|
example = Example.from_dict(sented_doc, gold)
|
|
scores = scorer.score([example])
|
|
assert scores["sents_f"] == 1.0
|
|
|
|
# One sentence start is moved
|
|
gold["sent_starts"][3] = 0
|
|
gold["sent_starts"][4] = 1
|
|
example = Example.from_dict(sented_doc, gold)
|
|
scores = scorer.score([example])
|
|
assert scores["sents_f"] == approx(0.3333333)
|
|
|
|
|
|
def test_las_per_type(en_vocab):
|
|
# Gold and Doc are identical
|
|
scorer = Scorer()
|
|
examples = []
|
|
for input_, annot in test_las_apple:
|
|
doc = Doc(
|
|
en_vocab, words=input_.split(" "), heads=annot["heads"], deps=annot["deps"]
|
|
)
|
|
gold = {"heads": annot["heads"], "deps": annot["deps"]}
|
|
example = Example.from_dict(doc, gold)
|
|
examples.append(example)
|
|
results = scorer.score(examples)
|
|
|
|
assert results["dep_uas"] == 1.0
|
|
assert results["dep_las"] == 1.0
|
|
assert results["dep_las_per_type"]["nsubj"]["p"] == 1.0
|
|
assert results["dep_las_per_type"]["nsubj"]["r"] == 1.0
|
|
assert results["dep_las_per_type"]["nsubj"]["f"] == 1.0
|
|
assert results["dep_las_per_type"]["compound"]["p"] == 1.0
|
|
assert results["dep_las_per_type"]["compound"]["r"] == 1.0
|
|
assert results["dep_las_per_type"]["compound"]["f"] == 1.0
|
|
|
|
# One dep is incorrect in Doc
|
|
scorer = Scorer()
|
|
examples = []
|
|
for input_, annot in test_las_apple:
|
|
doc = Doc(
|
|
en_vocab, words=input_.split(" "), heads=annot["heads"], deps=annot["deps"]
|
|
)
|
|
gold = {"heads": annot["heads"], "deps": annot["deps"]}
|
|
doc[0].dep_ = "compound"
|
|
example = Example.from_dict(doc, gold)
|
|
examples.append(example)
|
|
results = scorer.score(examples)
|
|
|
|
assert results["dep_uas"] == 1.0
|
|
assert_almost_equal(results["dep_las"], 0.9090909)
|
|
assert results["dep_las_per_type"]["nsubj"]["p"] == 0
|
|
assert results["dep_las_per_type"]["nsubj"]["r"] == 0
|
|
assert results["dep_las_per_type"]["nsubj"]["f"] == 0
|
|
assert_almost_equal(results["dep_las_per_type"]["compound"]["p"], 0.666666666)
|
|
assert results["dep_las_per_type"]["compound"]["r"] == 1.0
|
|
assert results["dep_las_per_type"]["compound"]["f"] == 0.8
|
|
|
|
|
|
def test_ner_per_type(en_vocab):
|
|
# Gold and Doc are identical
|
|
scorer = Scorer()
|
|
examples = []
|
|
for input_, annot in test_ner_cardinal:
|
|
doc = Doc(
|
|
en_vocab, words=input_.split(" "), ents=["B-CARDINAL", "O", "B-CARDINAL"]
|
|
)
|
|
entities = offsets_to_biluo_tags(doc, annot["entities"])
|
|
example = Example.from_dict(doc, {"entities": entities})
|
|
# a hack for sentence boundaries
|
|
example.predicted[1].is_sent_start = False
|
|
example.reference[1].is_sent_start = False
|
|
examples.append(example)
|
|
results = scorer.score(examples)
|
|
|
|
assert results["ents_p"] == 1.0
|
|
assert results["ents_r"] == 1.0
|
|
assert results["ents_f"] == 1.0
|
|
assert results["ents_per_type"]["CARDINAL"]["p"] == 1.0
|
|
assert results["ents_per_type"]["CARDINAL"]["r"] == 1.0
|
|
assert results["ents_per_type"]["CARDINAL"]["f"] == 1.0
|
|
|
|
# Doc has one missing and one extra entity
|
|
# Entity type MONEY is not present in Doc
|
|
scorer = Scorer()
|
|
examples = []
|
|
for input_, annot in test_ner_apple:
|
|
doc = Doc(
|
|
en_vocab,
|
|
words=input_.split(" "),
|
|
ents=["B-ORG", "O", "O", "O", "O", "B-GPE", "B-ORG", "O", "O", "O"],
|
|
)
|
|
entities = offsets_to_biluo_tags(doc, annot["entities"])
|
|
example = Example.from_dict(doc, {"entities": entities})
|
|
# a hack for sentence boundaries
|
|
example.predicted[1].is_sent_start = False
|
|
example.reference[1].is_sent_start = False
|
|
examples.append(example)
|
|
results = scorer.score(examples)
|
|
|
|
assert results["ents_p"] == approx(0.6666666)
|
|
assert results["ents_r"] == approx(0.6666666)
|
|
assert results["ents_f"] == approx(0.6666666)
|
|
assert "GPE" in results["ents_per_type"]
|
|
assert "MONEY" in results["ents_per_type"]
|
|
assert "ORG" in results["ents_per_type"]
|
|
assert results["ents_per_type"]["GPE"]["p"] == 1.0
|
|
assert results["ents_per_type"]["GPE"]["r"] == 1.0
|
|
assert results["ents_per_type"]["GPE"]["f"] == 1.0
|
|
assert results["ents_per_type"]["MONEY"]["p"] == 0
|
|
assert results["ents_per_type"]["MONEY"]["r"] == 0
|
|
assert results["ents_per_type"]["MONEY"]["f"] == 0
|
|
assert results["ents_per_type"]["ORG"]["p"] == 0.5
|
|
assert results["ents_per_type"]["ORG"]["r"] == 1.0
|
|
assert results["ents_per_type"]["ORG"]["f"] == approx(0.6666666)
|
|
|
|
|
|
def test_tag_score(tagged_doc):
|
|
# Gold and Doc are identical
|
|
scorer = Scorer()
|
|
gold = {
|
|
"tags": [t.tag_ for t in tagged_doc],
|
|
"pos": [t.pos_ for t in tagged_doc],
|
|
"morphs": [str(t.morph) for t in tagged_doc],
|
|
"sent_starts": [1 if t.is_sent_start else -1 for t in tagged_doc],
|
|
}
|
|
example = Example.from_dict(tagged_doc, gold)
|
|
results = scorer.score([example])
|
|
|
|
assert results["tag_acc"] == 1.0
|
|
assert results["pos_acc"] == 1.0
|
|
assert results["morph_acc"] == 1.0
|
|
assert results["morph_micro_f"] == 1.0
|
|
assert results["morph_per_feat"]["NounType"]["f"] == 1.0
|
|
|
|
# Gold annotation is modified
|
|
scorer = Scorer()
|
|
tags = [t.tag_ for t in tagged_doc]
|
|
tags[0] = "NN"
|
|
pos = [t.pos_ for t in tagged_doc]
|
|
pos[1] = "X"
|
|
morphs = [str(t.morph) for t in tagged_doc]
|
|
morphs[1] = "Number=sing"
|
|
morphs[2] = "Number=plur"
|
|
gold = {
|
|
"tags": tags,
|
|
"pos": pos,
|
|
"morphs": morphs,
|
|
"sent_starts": gold["sent_starts"],
|
|
}
|
|
example = Example.from_dict(tagged_doc, gold)
|
|
results = scorer.score([example])
|
|
|
|
assert results["tag_acc"] == 0.9
|
|
assert results["pos_acc"] == 0.9
|
|
assert results["morph_acc"] == approx(0.8)
|
|
assert results["morph_micro_f"] == approx(0.8461538)
|
|
assert results["morph_per_feat"]["NounType"]["f"] == 1.0
|
|
assert results["morph_per_feat"]["Poss"]["f"] == 0.0
|
|
assert results["morph_per_feat"]["Number"]["f"] == approx(0.72727272)
|
|
|
|
|
|
def test_partial_annotation(en_tokenizer):
|
|
pred_doc = en_tokenizer("a b c d e")
|
|
pred_doc[0].tag_ = "A"
|
|
pred_doc[0].pos_ = "X"
|
|
pred_doc[0].set_morph("Feat=Val")
|
|
pred_doc[0].dep_ = "dep"
|
|
|
|
# unannotated reference
|
|
ref_doc = en_tokenizer("a b c d e")
|
|
ref_doc.has_unknown_spaces = True
|
|
example = Example(pred_doc, ref_doc)
|
|
scorer = Scorer()
|
|
scores = scorer.score([example])
|
|
for key in scores:
|
|
# cats doesn't have an unset state
|
|
if key.startswith("cats"):
|
|
continue
|
|
assert scores[key] is None
|
|
|
|
# partially annotated reference, not overlapping with predicted annotation
|
|
ref_doc = en_tokenizer("a b c d e")
|
|
ref_doc.has_unknown_spaces = True
|
|
ref_doc[1].tag_ = "A"
|
|
ref_doc[1].pos_ = "X"
|
|
ref_doc[1].set_morph("Feat=Val")
|
|
ref_doc[1].dep_ = "dep"
|
|
example = Example(pred_doc, ref_doc)
|
|
scorer = Scorer()
|
|
scores = scorer.score([example])
|
|
assert scores["token_acc"] is None
|
|
assert scores["tag_acc"] == 0.0
|
|
assert scores["pos_acc"] == 0.0
|
|
assert scores["morph_acc"] == 0.0
|
|
assert scores["dep_uas"] == 1.0
|
|
assert scores["dep_las"] == 0.0
|
|
assert scores["sents_f"] is None
|
|
|
|
# partially annotated reference, overlapping with predicted annotation
|
|
ref_doc = en_tokenizer("a b c d e")
|
|
ref_doc.has_unknown_spaces = True
|
|
ref_doc[0].tag_ = "A"
|
|
ref_doc[0].pos_ = "X"
|
|
ref_doc[1].set_morph("Feat=Val")
|
|
ref_doc[1].dep_ = "dep"
|
|
example = Example(pred_doc, ref_doc)
|
|
scorer = Scorer()
|
|
scores = scorer.score([example])
|
|
assert scores["token_acc"] is None
|
|
assert scores["tag_acc"] == 1.0
|
|
assert scores["pos_acc"] == 1.0
|
|
assert scores["morph_acc"] == 0.0
|
|
assert scores["dep_uas"] == 1.0
|
|
assert scores["dep_las"] == 0.0
|
|
assert scores["sents_f"] is None
|
|
|
|
|
|
def test_roc_auc_score():
|
|
# Binary classification, toy tests from scikit-learn test suite
|
|
y_true = [0, 1]
|
|
y_score = [0, 1]
|
|
tpr, fpr, _ = _roc_curve(y_true, y_score)
|
|
roc_auc = _roc_auc_score(y_true, y_score)
|
|
assert_array_almost_equal(tpr, [0, 0, 1])
|
|
assert_array_almost_equal(fpr, [0, 1, 1])
|
|
assert_almost_equal(roc_auc, 1.0)
|
|
|
|
y_true = [0, 1]
|
|
y_score = [1, 0]
|
|
tpr, fpr, _ = _roc_curve(y_true, y_score)
|
|
roc_auc = _roc_auc_score(y_true, y_score)
|
|
assert_array_almost_equal(tpr, [0, 1, 1])
|
|
assert_array_almost_equal(fpr, [0, 0, 1])
|
|
assert_almost_equal(roc_auc, 0.0)
|
|
|
|
y_true = [1, 0]
|
|
y_score = [1, 1]
|
|
tpr, fpr, _ = _roc_curve(y_true, y_score)
|
|
roc_auc = _roc_auc_score(y_true, y_score)
|
|
assert_array_almost_equal(tpr, [0, 1])
|
|
assert_array_almost_equal(fpr, [0, 1])
|
|
assert_almost_equal(roc_auc, 0.5)
|
|
|
|
y_true = [1, 0]
|
|
y_score = [1, 0]
|
|
tpr, fpr, _ = _roc_curve(y_true, y_score)
|
|
roc_auc = _roc_auc_score(y_true, y_score)
|
|
assert_array_almost_equal(tpr, [0, 0, 1])
|
|
assert_array_almost_equal(fpr, [0, 1, 1])
|
|
assert_almost_equal(roc_auc, 1.0)
|
|
|
|
y_true = [1, 0]
|
|
y_score = [0.5, 0.5]
|
|
tpr, fpr, _ = _roc_curve(y_true, y_score)
|
|
roc_auc = _roc_auc_score(y_true, y_score)
|
|
assert_array_almost_equal(tpr, [0, 1])
|
|
assert_array_almost_equal(fpr, [0, 1])
|
|
assert_almost_equal(roc_auc, 0.5)
|
|
|
|
# same result as above with ROCAUCScore wrapper
|
|
score = ROCAUCScore()
|
|
score.score_set(0.5, 1)
|
|
score.score_set(0.5, 0)
|
|
assert_almost_equal(score.score, 0.5)
|
|
|
|
# check that errors are raised in undefined cases and score is -inf
|
|
y_true = [0, 0]
|
|
y_score = [0.25, 0.75]
|
|
with pytest.raises(ValueError):
|
|
_roc_auc_score(y_true, y_score)
|
|
|
|
score = ROCAUCScore()
|
|
score.score_set(0.25, 0)
|
|
score.score_set(0.75, 0)
|
|
with pytest.raises(ValueError):
|
|
_ = score.score # noqa: F841
|
|
|
|
y_true = [1, 1]
|
|
y_score = [0.25, 0.75]
|
|
with pytest.raises(ValueError):
|
|
_roc_auc_score(y_true, y_score)
|
|
|
|
score = ROCAUCScore()
|
|
score.score_set(0.25, 1)
|
|
score.score_set(0.75, 1)
|
|
with pytest.raises(ValueError):
|
|
_ = score.score # noqa: F841
|
|
|
|
|
|
def test_score_spans():
|
|
nlp = English()
|
|
text = "This is just a random sentence."
|
|
key = "my_spans"
|
|
gold = nlp.make_doc(text)
|
|
pred = nlp.make_doc(text)
|
|
spans = []
|
|
spans.append(gold.char_span(0, 4, label="PERSON"))
|
|
spans.append(gold.char_span(0, 7, label="ORG"))
|
|
spans.append(gold.char_span(8, 12, label="ORG"))
|
|
gold.spans[key] = spans
|
|
|
|
def span_getter(doc, span_key):
|
|
return doc.spans[span_key]
|
|
|
|
# Predict exactly the same, but overlapping spans will be discarded
|
|
pred.spans[key] = spans
|
|
eg = Example(pred, gold)
|
|
scores = Scorer.score_spans([eg], attr=key, getter=span_getter)
|
|
assert scores[f"{key}_p"] == 1.0
|
|
assert scores[f"{key}_r"] < 1.0
|
|
|
|
# Allow overlapping, now both precision and recall should be 100%
|
|
pred.spans[key] = spans
|
|
eg = Example(pred, gold)
|
|
scores = Scorer.score_spans([eg], attr=key, getter=span_getter, allow_overlap=True)
|
|
assert scores[f"{key}_p"] == 1.0
|
|
assert scores[f"{key}_r"] == 1.0
|
|
|
|
# Change the predicted labels
|
|
new_spans = [Span(pred, span.start, span.end, label="WRONG") for span in spans]
|
|
pred.spans[key] = new_spans
|
|
eg = Example(pred, gold)
|
|
scores = Scorer.score_spans([eg], attr=key, getter=span_getter, allow_overlap=True)
|
|
assert scores[f"{key}_p"] == 0.0
|
|
assert scores[f"{key}_r"] == 0.0
|
|
assert f"{key}_per_type" in scores
|
|
|
|
# Discard labels from the evaluation
|
|
scores = Scorer.score_spans(
|
|
[eg], attr=key, getter=span_getter, allow_overlap=True, labeled=False
|
|
)
|
|
assert scores[f"{key}_p"] == 1.0
|
|
assert scores[f"{key}_r"] == 1.0
|
|
assert f"{key}_per_type" not in scores
|
|
|
|
|
|
def test_prf_score():
|
|
cand = {"hi", "ho"}
|
|
gold1 = {"yo", "hi"}
|
|
gold2 = set()
|
|
|
|
a = PRFScore()
|
|
a.score_set(cand=cand, gold=gold1)
|
|
assert (a.precision, a.recall, a.fscore) == approx((0.5, 0.5, 0.5))
|
|
|
|
b = PRFScore()
|
|
b.score_set(cand=cand, gold=gold2)
|
|
assert (b.precision, b.recall, b.fscore) == approx((0.0, 0.0, 0.0))
|
|
|
|
c = a + b
|
|
assert (c.precision, c.recall, c.fscore) == approx((0.25, 0.5, 0.33333333))
|
|
|
|
a += b
|
|
assert (a.precision, a.recall, a.fscore) == approx(
|
|
(c.precision, c.recall, c.fscore)
|
|
)
|
|
|
|
|
|
def test_score_cats(en_tokenizer):
|
|
text = "some text"
|
|
gold_doc = en_tokenizer(text)
|
|
gold_doc.cats = {"POSITIVE": 1.0, "NEGATIVE": 0.0}
|
|
pred_doc = en_tokenizer(text)
|
|
pred_doc.cats = {"POSITIVE": 0.75, "NEGATIVE": 0.25}
|
|
example = Example(pred_doc, gold_doc)
|
|
# threshold is ignored for multi_label=False
|
|
scores1 = Scorer.score_cats(
|
|
[example],
|
|
"cats",
|
|
labels=list(gold_doc.cats.keys()),
|
|
multi_label=False,
|
|
positive_label="POSITIVE",
|
|
threshold=0.1,
|
|
)
|
|
scores2 = Scorer.score_cats(
|
|
[example],
|
|
"cats",
|
|
labels=list(gold_doc.cats.keys()),
|
|
multi_label=False,
|
|
positive_label="POSITIVE",
|
|
threshold=0.9,
|
|
)
|
|
assert scores1["cats_score"] == 1.0
|
|
assert scores2["cats_score"] == 1.0
|
|
assert scores1 == scores2
|
|
# threshold is relevant for multi_label=True
|
|
scores = Scorer.score_cats(
|
|
[example],
|
|
"cats",
|
|
labels=list(gold_doc.cats.keys()),
|
|
multi_label=True,
|
|
threshold=0.9,
|
|
)
|
|
assert scores["cats_macro_f"] == 0.0
|
|
# threshold is relevant for multi_label=True
|
|
scores = Scorer.score_cats(
|
|
[example],
|
|
"cats",
|
|
labels=list(gold_doc.cats.keys()),
|
|
multi_label=True,
|
|
threshold=0.1,
|
|
)
|
|
assert scores["cats_macro_f"] == 0.5
|