mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-04 06:16:33 +03:00
aa2b471a6e
* Add `ConsoleLogger.v3` This addition expands the progress bar feature to count up the training/distillation steps to either the next evaluation pass or the maximum number of steps. * Rename progress bar types * Add defaults to docs Minor fixes * Move comment * Minor punctuation fixes * Explicitly check for `None` when validating progress bar type Co-authored-by: Paul O'Leary McCann <polm@dampfkraft.com>
199 lines
7.6 KiB
Python
199 lines
7.6 KiB
Python
from typing import TYPE_CHECKING, Dict, Any, Tuple, Callable, List, Optional, IO, Union
|
|
from wasabi import Printer
|
|
from pathlib import Path
|
|
import tqdm
|
|
import sys
|
|
import srsly
|
|
|
|
from ..util import registry
|
|
from ..errors import Errors
|
|
from .. import util
|
|
|
|
if TYPE_CHECKING:
|
|
from ..language import Language # noqa: F401
|
|
|
|
|
|
def setup_table(
|
|
*, cols: List[str], widths: List[int], max_width: int = 13
|
|
) -> Tuple[List[str], List[int], List[str]]:
|
|
final_cols = []
|
|
final_widths = []
|
|
for col, width in zip(cols, widths):
|
|
if len(col) > max_width:
|
|
col = col[: max_width - 3] + "..." # shorten column if too long
|
|
final_cols.append(col.upper())
|
|
final_widths.append(max(len(col), width))
|
|
return final_cols, final_widths, ["r" for _ in final_widths]
|
|
|
|
|
|
# We cannot rename this method as it's directly imported
|
|
# and used by external packages such as spacy-loggers.
|
|
@registry.loggers("spacy.ConsoleLogger.v2")
|
|
def console_logger(
|
|
progress_bar: bool = False,
|
|
console_output: bool = True,
|
|
output_file: Optional[Union[str, Path]] = None,
|
|
):
|
|
"""The ConsoleLogger.v2 prints out training logs in the console and/or saves them to a jsonl file.
|
|
progress_bar (bool): Whether the logger should print a progress bar tracking the steps till the next evaluation pass.
|
|
console_output (bool): Whether the logger should print the logs on the console.
|
|
output_file (Optional[Union[str, Path]]): The file to save the training logs to.
|
|
"""
|
|
return console_logger_v3(
|
|
progress_bar=None if progress_bar is False else "eval",
|
|
console_output=console_output,
|
|
output_file=output_file,
|
|
)
|
|
|
|
|
|
@registry.loggers("spacy.ConsoleLogger.v3")
|
|
def console_logger_v3(
|
|
progress_bar: Optional[str] = None,
|
|
console_output: bool = True,
|
|
output_file: Optional[Union[str, Path]] = None,
|
|
):
|
|
"""The ConsoleLogger.v3 prints out training logs in the console and/or saves them to a jsonl file.
|
|
progress_bar (Optional[str]): Type of progress bar to show in the console. Allowed values:
|
|
train - Tracks the number of steps from the beginning of training until the full training run is complete (training.max_steps is reached).
|
|
eval - Tracks the number of steps between the previous and next evaluation (training.eval_frequency is reached).
|
|
console_output (bool): Whether the logger should print the logs on the console.
|
|
output_file (Optional[Union[str, Path]]): The file to save the training logs to.
|
|
"""
|
|
_log_exist = False
|
|
if output_file:
|
|
output_file = util.ensure_path(output_file) # type: ignore
|
|
if output_file.exists(): # type: ignore
|
|
_log_exist = True
|
|
if not output_file.parents[0].exists(): # type: ignore
|
|
output_file.parents[0].mkdir(parents=True) # type: ignore
|
|
|
|
def setup_printer(
|
|
nlp: "Language", stdout: IO = sys.stdout, stderr: IO = sys.stderr
|
|
) -> Tuple[Callable[[Optional[Dict[str, Any]]], None], Callable[[], None]]:
|
|
write = lambda text: print(text, file=stdout, flush=True)
|
|
msg = Printer(no_print=True)
|
|
|
|
nonlocal output_file
|
|
output_stream = None
|
|
if _log_exist:
|
|
write(
|
|
msg.warn(
|
|
f"Saving logs is disabled because {output_file} already exists."
|
|
)
|
|
)
|
|
output_file = None
|
|
elif output_file:
|
|
write(msg.info(f"Saving results to {output_file}"))
|
|
output_stream = open(output_file, "w", encoding="utf-8")
|
|
|
|
# ensure that only trainable components are logged
|
|
logged_pipes = [
|
|
name
|
|
for name, proc in nlp.pipeline
|
|
if hasattr(proc, "is_trainable") and proc.is_trainable
|
|
]
|
|
max_steps = nlp.config["training"]["max_steps"]
|
|
eval_frequency = nlp.config["training"]["eval_frequency"]
|
|
score_weights = nlp.config["training"]["score_weights"]
|
|
score_cols = [col for col, value in score_weights.items() if value is not None]
|
|
loss_cols = [f"Loss {pipe}" for pipe in logged_pipes]
|
|
|
|
if console_output:
|
|
spacing = 2
|
|
table_header, table_widths, table_aligns = setup_table(
|
|
cols=["E", "#"] + loss_cols + score_cols + ["Score"],
|
|
widths=[3, 6] + [8 for _ in loss_cols] + [6 for _ in score_cols] + [6],
|
|
)
|
|
write(msg.row(table_header, widths=table_widths, spacing=spacing))
|
|
write(msg.row(["-" * width for width in table_widths], spacing=spacing))
|
|
progress = None
|
|
expected_progress_types = ("train", "eval")
|
|
if progress_bar is not None and progress_bar not in expected_progress_types:
|
|
raise ValueError(
|
|
Errors.E1048.format(
|
|
unexpected=progress_bar, expected=expected_progress_types
|
|
)
|
|
)
|
|
|
|
def log_step(info: Optional[Dict[str, Any]]) -> None:
|
|
nonlocal progress
|
|
|
|
if info is None:
|
|
# If we don't have a new checkpoint, just return.
|
|
if progress is not None:
|
|
progress.update(1)
|
|
return
|
|
|
|
losses = []
|
|
log_losses = {}
|
|
for pipe_name in logged_pipes:
|
|
losses.append("{0:.2f}".format(float(info["losses"][pipe_name])))
|
|
log_losses[pipe_name] = float(info["losses"][pipe_name])
|
|
|
|
scores = []
|
|
log_scores = {}
|
|
for col in score_cols:
|
|
score = info["other_scores"].get(col, 0.0)
|
|
try:
|
|
score = float(score)
|
|
except TypeError:
|
|
err = Errors.E916.format(name=col, score_type=type(score))
|
|
raise ValueError(err) from None
|
|
if col != "speed":
|
|
score *= 100
|
|
scores.append("{0:.2f}".format(score))
|
|
log_scores[str(col)] = score
|
|
|
|
data = (
|
|
[info["epoch"], info["step"]]
|
|
+ losses
|
|
+ scores
|
|
+ ["{0:.2f}".format(float(info["score"]))]
|
|
)
|
|
|
|
if output_stream:
|
|
# Write to log file per log_step
|
|
log_data = {
|
|
"epoch": info["epoch"],
|
|
"step": info["step"],
|
|
"losses": log_losses,
|
|
"scores": log_scores,
|
|
"score": float(info["score"]),
|
|
}
|
|
output_stream.write(srsly.json_dumps(log_data) + "\n")
|
|
|
|
if progress is not None:
|
|
progress.close()
|
|
if console_output:
|
|
write(
|
|
msg.row(
|
|
data, widths=table_widths, aligns=table_aligns, spacing=spacing
|
|
)
|
|
)
|
|
if progress_bar:
|
|
if progress_bar == "train":
|
|
total = max_steps
|
|
desc = f"Last Eval Epoch: {info['epoch']}"
|
|
initial = info["step"]
|
|
else:
|
|
total = eval_frequency
|
|
desc = f"Epoch {info['epoch']+1}"
|
|
initial = 0
|
|
# Set disable=None, so that it disables on non-TTY
|
|
progress = tqdm.tqdm(
|
|
total=total,
|
|
disable=None,
|
|
leave=False,
|
|
file=stderr,
|
|
initial=initial,
|
|
)
|
|
progress.set_description(desc)
|
|
|
|
def finalize() -> None:
|
|
if output_stream:
|
|
output_stream.close()
|
|
|
|
return log_step, finalize
|
|
|
|
return setup_printer
|