mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-22 23:34:12 +03:00
5e297aa20e
* Add `TrainablePipe.{distill,get_teacher_student_loss}` This change adds two methods: - `TrainablePipe::distill` which performs a training step of a student pipe on a teacher pipe, giving a batch of `Doc`s. - `TrainablePipe::get_teacher_student_loss` computes the loss of a student relative to the teacher. The `distill` or `get_teacher_student_loss` methods are also implemented in the tagger, edit tree lemmatizer, and parser pipes, to enable distillation in those pipes and as an example for other pipes. * Fix stray `Beam` import * Fix incorrect import * Apply suggestions from code review Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Apply suggestions from code review Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * TrainablePipe.distill: use `Iterable[Example]` * Add Pipe.is_distillable method * Add `validate_distillation_examples` This first calls `validate_examples` and then checks that the student/teacher tokens are the same. * Update distill documentation * Add distill documentation for all pipes that support distillation * Fix incorrect identifier * Apply suggestions from code review Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Add comment to explain `is_distillable` Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
513 lines
28 KiB
Plaintext
513 lines
28 KiB
Plaintext
---
|
|
title: EntityRecognizer
|
|
tag: class
|
|
source: spacy/pipeline/ner.pyx
|
|
teaser: 'Pipeline component for named entity recognition'
|
|
api_base_class: /api/pipe
|
|
api_string_name: ner
|
|
api_trainable: true
|
|
---
|
|
|
|
A transition-based named entity recognition component. The entity recognizer
|
|
identifies **non-overlapping labelled spans** of tokens. The transition-based
|
|
algorithm used encodes certain assumptions that are effective for "traditional"
|
|
named entity recognition tasks, but may not be a good fit for every span
|
|
identification problem. Specifically, the loss function optimizes for **whole
|
|
entity accuracy**, so if your inter-annotator agreement on boundary tokens is
|
|
low, the component will likely perform poorly on your problem. The
|
|
transition-based algorithm also assumes that the most decisive information about
|
|
your entities will be close to their initial tokens. If your entities are long
|
|
and characterized by tokens in their middle, the component will likely not be a
|
|
good fit for your task.
|
|
|
|
## Assigned Attributes {id="assigned-attributes"}
|
|
|
|
Predictions will be saved to `Doc.ents` as a tuple. Each label will also be
|
|
reflected to each underlying token, where it is saved in the `Token.ent_type`
|
|
and `Token.ent_iob` fields. Note that by definition each token can only have one
|
|
label.
|
|
|
|
When setting `Doc.ents` to create training data, all the spans must be valid and
|
|
non-overlapping, or an error will be thrown.
|
|
|
|
| Location | Value |
|
|
| ----------------- | ----------------------------------------------------------------- |
|
|
| `Doc.ents` | The annotated spans. ~~Tuple[Span]~~ |
|
|
| `Token.ent_iob` | An enum encoding of the IOB part of the named entity tag. ~~int~~ |
|
|
| `Token.ent_iob_` | The IOB part of the named entity tag. ~~str~~ |
|
|
| `Token.ent_type` | The label part of the named entity tag (hash). ~~int~~ |
|
|
| `Token.ent_type_` | The label part of the named entity tag. ~~str~~ |
|
|
|
|
## Config and implementation {id="config"}
|
|
|
|
The default config is defined by the pipeline component factory and describes
|
|
how the component should be configured. You can override its settings via the
|
|
`config` argument on [`nlp.add_pipe`](/api/language#add_pipe) or in your
|
|
[`config.cfg` for training](/usage/training#config). See the
|
|
[model architectures](/api/architectures) documentation for details on the
|
|
architectures and their arguments and hyperparameters.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> from spacy.pipeline.ner import DEFAULT_NER_MODEL
|
|
> config = {
|
|
> "moves": None,
|
|
> "update_with_oracle_cut_size": 100,
|
|
> "model": DEFAULT_NER_MODEL,
|
|
> "incorrect_spans_key": "incorrect_spans",
|
|
> }
|
|
> nlp.add_pipe("ner", config=config)
|
|
> ```
|
|
|
|
| Setting | Description |
|
|
| ----------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
|
| `moves` | A list of transition names. Inferred from the data if not provided. Defaults to `None`. ~~Optional[TransitionSystem]~~ |
|
|
| `update_with_oracle_cut_size` | During training, cut long sequences into shorter segments by creating intermediate states based on the gold-standard history. The model is not very sensitive to this parameter, so you usually won't need to change it. Defaults to `100`. ~~int~~ |
|
|
| `model` | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. Defaults to [TransitionBasedParser](/api/architectures#TransitionBasedParser). ~~Model[List[Doc], List[Floats2d]]~~ |
|
|
| `incorrect_spans_key` | This key refers to a `SpanGroup` in `doc.spans` that specifies incorrect spans. The NER will learn not to predict (exactly) those spans. Defaults to `None`. ~~Optional[str]~~ |
|
|
| `scorer` | The scoring method. Defaults to [`spacy.scorer.get_ner_prf`](/api/scorer#get_ner_prf). ~~Optional[Callable]~~ |
|
|
|
|
```python
|
|
%%GITHUB_SPACY/spacy/pipeline/ner.pyx
|
|
```
|
|
|
|
## EntityRecognizer.\_\_init\_\_ {id="init",tag="method"}
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> # Construction via add_pipe with default model
|
|
> ner = nlp.add_pipe("ner")
|
|
>
|
|
> # Construction via add_pipe with custom model
|
|
> config = {"model": {"@architectures": "my_ner"}}
|
|
> parser = nlp.add_pipe("ner", config=config)
|
|
>
|
|
> # Construction from class
|
|
> from spacy.pipeline import EntityRecognizer
|
|
> ner = EntityRecognizer(nlp.vocab, model)
|
|
> ```
|
|
|
|
Create a new pipeline instance. In your application, you would normally use a
|
|
shortcut for this and instantiate the component using its string name and
|
|
[`nlp.add_pipe`](/api/language#add_pipe).
|
|
|
|
| Name | Description |
|
|
| ----------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
|
| `vocab` | The shared vocabulary. ~~Vocab~~ |
|
|
| `model` | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. ~~Model[List[Doc], List[Floats2d]]~~ |
|
|
| `name` | String name of the component instance. Used to add entries to the `losses` during training. ~~str~~ |
|
|
| `moves` | A list of transition names. Inferred from the data if set to `None`, which is the default. ~~Optional[TransitionSystem]~~ |
|
|
| _keyword-only_ | |
|
|
| `update_with_oracle_cut_size` | During training, cut long sequences into shorter segments by creating intermediate states based on the gold-standard history. The model is not very sensitive to this parameter, so you usually won't need to change it. Defaults to `100`. ~~int~~ |
|
|
| `incorrect_spans_key` | Identifies spans that are known to be incorrect entity annotations. The incorrect entity annotations can be stored in the span group in [`Doc.spans`](/api/doc#spans), under this key. Defaults to `None`. ~~Optional[str]~~ |
|
|
|
|
## EntityRecognizer.\_\_call\_\_ {id="call",tag="method"}
|
|
|
|
Apply the pipe to one document. The document is modified in place and returned.
|
|
This usually happens under the hood when the `nlp` object is called on a text
|
|
and all pipeline components are applied to the `Doc` in order. Both
|
|
[`__call__`](/api/entityrecognizer#call) and
|
|
[`pipe`](/api/entityrecognizer#pipe) delegate to the
|
|
[`predict`](/api/entityrecognizer#predict) and
|
|
[`set_annotations`](/api/entityrecognizer#set_annotations) methods.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> doc = nlp("This is a sentence.")
|
|
> ner = nlp.add_pipe("ner")
|
|
> # This usually happens under the hood
|
|
> processed = ner(doc)
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| ----------- | -------------------------------- |
|
|
| `doc` | The document to process. ~~Doc~~ |
|
|
| **RETURNS** | The processed document. ~~Doc~~ |
|
|
|
|
## EntityRecognizer.distill {id="distill", tag="method,experimental", version="4"}
|
|
|
|
Train a pipe (the student) on the predictions of another pipe (the teacher). The
|
|
student is typically trained on the probability distribution of the teacher, but
|
|
details may differ per pipe. The goal of distillation is to transfer knowledge
|
|
from the teacher to the student.
|
|
|
|
The distillation is performed on ~~Example~~ objects. The `Example.reference`
|
|
and `Example.predicted` ~~Doc~~s must have the same number of tokens and the
|
|
same orthography. Even though the reference does not need have to have gold
|
|
annotations, the teacher could adds its own annotations when necessary.
|
|
|
|
This feature is experimental.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> teacher_pipe = teacher.add_pipe("ner")
|
|
> student_pipe = student.add_pipe("ner")
|
|
> optimizer = nlp.resume_training()
|
|
> losses = student.distill(teacher_pipe, examples, sgd=optimizer)
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------- |
|
|
| `teacher_pipe` | The teacher pipe to learn from. ~~Optional[TrainablePipe]~~ |
|
|
| `examples` | Distillation examples. The reference and predicted docs must have the same number of tokens and the same orthography. ~~Iterable[Example]~~ |
|
|
| _keyword-only_ | |
|
|
| `drop` | Dropout rate. ~~float~~ |
|
|
| `sgd` | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~ |
|
|
| `losses` | Optional record of the loss during distillation. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~ |
|
|
| **RETURNS** | The updated `losses` dictionary. ~~Dict[str, float]~~ |
|
|
|
|
## EntityRecognizer.pipe {id="pipe",tag="method"}
|
|
|
|
Apply the pipe to a stream of documents. This usually happens under the hood
|
|
when the `nlp` object is called on a text and all pipeline components are
|
|
applied to the `Doc` in order. Both [`__call__`](/api/entityrecognizer#call) and
|
|
[`pipe`](/api/entityrecognizer#pipe) delegate to the
|
|
[`predict`](/api/entityrecognizer#predict) and
|
|
[`set_annotations`](/api/entityrecognizer#set_annotations) methods.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> ner = nlp.add_pipe("ner")
|
|
> for doc in ner.pipe(docs, batch_size=50):
|
|
> pass
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| -------------- | ------------------------------------------------------------- |
|
|
| `docs` | A stream of documents. ~~Iterable[Doc]~~ |
|
|
| _keyword-only_ | |
|
|
| `batch_size` | The number of documents to buffer. Defaults to `128`. ~~int~~ |
|
|
| **YIELDS** | The processed documents in order. ~~Doc~~ |
|
|
|
|
## EntityRecognizer.initialize {id="initialize",tag="method",version="3"}
|
|
|
|
Initialize the component for training. `get_examples` should be a function that
|
|
returns an iterable of [`Example`](/api/example) objects. **At least one example
|
|
should be supplied.** The data examples are used to **initialize the model** of
|
|
the component and can either be the full training data or a representative
|
|
sample. Initialization includes validating the network,
|
|
[inferring missing shapes](https://thinc.ai/docs/usage-models#validation) and
|
|
setting up the label scheme based on the data. This method is typically called
|
|
by [`Language.initialize`](/api/language#initialize) and lets you customize
|
|
arguments it receives via the
|
|
[`[initialize.components]`](/api/data-formats#config-initialize) block in the
|
|
config.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> ner = nlp.add_pipe("ner")
|
|
> ner.initialize(lambda: examples, nlp=nlp)
|
|
> ```
|
|
>
|
|
> ```ini
|
|
> ### config.cfg
|
|
> [initialize.components.ner]
|
|
>
|
|
> [initialize.components.ner.labels]
|
|
> @readers = "spacy.read_labels.v1"
|
|
> path = "corpus/labels/ner.json
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| -------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
|
| `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. Must contain at least one `Example`. ~~Callable[[], Iterable[Example]]~~ |
|
|
| _keyword-only_ | |
|
|
| `nlp` | The current `nlp` object. Defaults to `None`. ~~Optional[Language]~~ |
|
|
| `labels` | The label information to add to the component, as provided by the [`label_data`](#label_data) property after initialization. To generate a reusable JSON file from your data, you should run the [`init labels`](/api/cli#init-labels) command. If no labels are provided, the `get_examples` callback is used to extract the labels from the data, which may be a lot slower. ~~Optional[Dict[str, Dict[str, int]]]~~ |
|
|
|
|
## EntityRecognizer.predict {id="predict",tag="method"}
|
|
|
|
Apply the component's model to a batch of [`Doc`](/api/doc) objects, without
|
|
modifying them.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> ner = nlp.add_pipe("ner")
|
|
> scores = ner.predict([doc1, doc2])
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| ----------- | ------------------------------------------------------------- |
|
|
| `docs` | The documents to predict. ~~Iterable[Doc]~~ |
|
|
| **RETURNS** | A helper class for the parse state (internal). ~~StateClass~~ |
|
|
|
|
## EntityRecognizer.set_annotations {id="set_annotations",tag="method"}
|
|
|
|
Modify a batch of [`Doc`](/api/doc) objects, using pre-computed scores.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> ner = nlp.add_pipe("ner")
|
|
> scores = ner.predict([doc1, doc2])
|
|
> ner.set_annotations([doc1, doc2], scores)
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| -------- | ------------------------------------------------------------------------------------------------------------------------------------- |
|
|
| `docs` | The documents to modify. ~~Iterable[Doc]~~ |
|
|
| `scores` | The scores to set, produced by `EntityRecognizer.predict`. Returns an internal helper class for the parse state. ~~List[StateClass]~~ |
|
|
|
|
## EntityRecognizer.update {id="update",tag="method"}
|
|
|
|
Learn from a batch of [`Example`](/api/example) objects, updating the pipe's
|
|
model. Delegates to [`predict`](/api/entityrecognizer#predict) and
|
|
[`get_loss`](/api/entityrecognizer#get_loss).
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> ner = nlp.add_pipe("ner")
|
|
> optimizer = nlp.initialize()
|
|
> losses = ner.update(examples, sgd=optimizer)
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| -------------- | ------------------------------------------------------------------------------------------------------------------------ |
|
|
| `examples` | A batch of [`Example`](/api/example) objects to learn from. ~~Iterable[Example]~~ |
|
|
| _keyword-only_ | |
|
|
| `drop` | The dropout rate. ~~float~~ |
|
|
| `sgd` | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~ |
|
|
| `losses` | Optional record of the loss during training. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~ |
|
|
| **RETURNS** | The updated `losses` dictionary. ~~Dict[str, float]~~ |
|
|
|
|
## EntityRecognizer.get_loss {id="get_loss",tag="method"}
|
|
|
|
Find the loss and gradient of loss for the batch of documents and their
|
|
predicted scores.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> ner = nlp.add_pipe("ner")
|
|
> scores = ner.predict([eg.predicted for eg in examples])
|
|
> loss, d_loss = ner.get_loss(examples, scores)
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| ----------- | --------------------------------------------------------------------------- |
|
|
| `examples` | The batch of examples. ~~Iterable[Example]~~ |
|
|
| `scores` | Scores representing the model's predictions. ~~StateClass~~ |
|
|
| **RETURNS** | The loss and the gradient, i.e. `(loss, gradient)`. ~~Tuple[float, float]~~ |
|
|
|
|
## EntityRecognizer.get_teacher_student_loss {id="get_teacher_student_loss", tag="method", version="4"}
|
|
|
|
Calculate the loss and its gradient for the batch of student scores relative to
|
|
the teacher scores.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> teacher_ner = teacher.get_pipe("ner")
|
|
> student_ner = student.add_pipe("ner")
|
|
> student_scores = student_ner.predict([eg.predicted for eg in examples])
|
|
> teacher_scores = teacher_ner.predict([eg.predicted for eg in examples])
|
|
> loss, d_loss = student_ner.get_teacher_student_loss(teacher_scores, student_scores)
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| ---------------- | --------------------------------------------------------------------------- |
|
|
| `teacher_scores` | Scores representing the teacher model's predictions. |
|
|
| `student_scores` | Scores representing the student model's predictions. |
|
|
| **RETURNS** | The loss and the gradient, i.e. `(loss, gradient)`. ~~Tuple[float, float]~~ |
|
|
|
|
## EntityRecognizer.create_optimizer {id="create_optimizer",tag="method"}
|
|
|
|
Create an optimizer for the pipeline component.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> ner = nlp.add_pipe("ner")
|
|
> optimizer = ner.create_optimizer()
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| ----------- | ---------------------------- |
|
|
| **RETURNS** | The optimizer. ~~Optimizer~~ |
|
|
|
|
## EntityRecognizer.use_params {id="use_params",tag="method, contextmanager"}
|
|
|
|
Modify the pipe's model, to use the given parameter values. At the end of the
|
|
context, the original parameters are restored.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> ner = EntityRecognizer(nlp.vocab)
|
|
> with ner.use_params(optimizer.averages):
|
|
> ner.to_disk("/best_model")
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| -------- | -------------------------------------------------- |
|
|
| `params` | The parameter values to use in the model. ~~dict~~ |
|
|
|
|
## EntityRecognizer.add_label {id="add_label",tag="method"}
|
|
|
|
Add a new label to the pipe. Note that you don't have to call this method if you
|
|
provide a **representative data sample** to the [`initialize`](#initialize)
|
|
method. In this case, all labels found in the sample will be automatically added
|
|
to the model, and the output dimension will be
|
|
[inferred](/usage/layers-architectures#thinc-shape-inference) automatically.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> ner = nlp.add_pipe("ner")
|
|
> ner.add_label("MY_LABEL")
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| ----------- | ----------------------------------------------------------- |
|
|
| `label` | The label to add. ~~str~~ |
|
|
| **RETURNS** | `0` if the label is already present, otherwise `1`. ~~int~~ |
|
|
|
|
## EntityRecognizer.set_output {id="set_output",tag="method"}
|
|
|
|
Change the output dimension of the component's model by calling the model's
|
|
attribute `resize_output`. This is a function that takes the original model and
|
|
the new output dimension `nO`, and changes the model in place. When resizing an
|
|
already trained model, care should be taken to avoid the "catastrophic
|
|
forgetting" problem.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> ner = nlp.add_pipe("ner")
|
|
> ner.set_output(512)
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| ---- | --------------------------------- |
|
|
| `nO` | The new output dimension. ~~int~~ |
|
|
|
|
## EntityRecognizer.to_disk {id="to_disk",tag="method"}
|
|
|
|
Serialize the pipe to disk.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> ner = nlp.add_pipe("ner")
|
|
> ner.to_disk("/path/to/ner")
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------ |
|
|
| `path` | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
|
|
| _keyword-only_ | |
|
|
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
|
|
|
|
## EntityRecognizer.from_disk {id="from_disk",tag="method"}
|
|
|
|
Load the pipe from disk. Modifies the object in place and returns it.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> ner = nlp.add_pipe("ner")
|
|
> ner.from_disk("/path/to/ner")
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| -------------- | ----------------------------------------------------------------------------------------------- |
|
|
| `path` | A path to a directory. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
|
|
| _keyword-only_ | |
|
|
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
|
|
| **RETURNS** | The modified `EntityRecognizer` object. ~~EntityRecognizer~~ |
|
|
|
|
## EntityRecognizer.to_bytes {id="to_bytes",tag="method"}
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> ner = nlp.add_pipe("ner")
|
|
> ner_bytes = ner.to_bytes()
|
|
> ```
|
|
|
|
Serialize the pipe to a bytestring.
|
|
|
|
| Name | Description |
|
|
| -------------- | ------------------------------------------------------------------------------------------- |
|
|
| _keyword-only_ | |
|
|
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
|
|
| **RETURNS** | The serialized form of the `EntityRecognizer` object. ~~bytes~~ |
|
|
|
|
## EntityRecognizer.from_bytes {id="from_bytes",tag="method"}
|
|
|
|
Load the pipe from a bytestring. Modifies the object in place and returns it.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> ner_bytes = ner.to_bytes()
|
|
> ner = nlp.add_pipe("ner")
|
|
> ner.from_bytes(ner_bytes)
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| -------------- | ------------------------------------------------------------------------------------------- |
|
|
| `bytes_data` | The data to load from. ~~bytes~~ |
|
|
| _keyword-only_ | |
|
|
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
|
|
| **RETURNS** | The `EntityRecognizer` object. ~~EntityRecognizer~~ |
|
|
|
|
## EntityRecognizer.labels {id="labels",tag="property"}
|
|
|
|
The labels currently added to the component.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> ner.add_label("MY_LABEL")
|
|
> assert "MY_LABEL" in ner.labels
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| ----------- | ------------------------------------------------------ |
|
|
| **RETURNS** | The labels added to the component. ~~Tuple[str, ...]~~ |
|
|
|
|
## EntityRecognizer.label_data {id="label_data",tag="property",version="3"}
|
|
|
|
The labels currently added to the component and their internal meta information.
|
|
This is the data generated by [`init labels`](/api/cli#init-labels) and used by
|
|
[`EntityRecognizer.initialize`](/api/entityrecognizer#initialize) to initialize
|
|
the model with a pre-defined label set.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> labels = ner.label_data
|
|
> ner.initialize(lambda: [], nlp=nlp, labels=labels)
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| ----------- | ------------------------------------------------------------------------------- |
|
|
| **RETURNS** | The label data added to the component. ~~Dict[str, Dict[str, Dict[str, int]]]~~ |
|
|
|
|
## Serialization fields {id="serialization-fields"}
|
|
|
|
During serialization, spaCy will export several data fields used to restore
|
|
different aspects of the object. If needed, you can exclude them from
|
|
serialization by passing in the string names via the `exclude` argument.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> data = ner.to_disk("/path", exclude=["vocab"])
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| ------- | -------------------------------------------------------------- |
|
|
| `vocab` | The shared [`Vocab`](/api/vocab). |
|
|
| `cfg` | The config file. You usually don't want to exclude this. |
|
|
| `model` | The binary model data. You usually don't want to exclude this. |
|