mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			73 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			73 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
'''Test the ability to add a label to a (potentially trained) parsing model.'''
 | 
						|
from __future__ import unicode_literals
 | 
						|
import pytest
 | 
						|
import numpy.random
 | 
						|
from thinc.neural.optimizers import Adam
 | 
						|
from thinc.neural.ops import NumpyOps
 | 
						|
 | 
						|
from ...attrs import NORM
 | 
						|
from ...gold import GoldParse
 | 
						|
from ...vocab import Vocab
 | 
						|
from ...tokens import Doc
 | 
						|
from ...pipeline import DependencyParser
 | 
						|
 | 
						|
numpy.random.seed(0)
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture
 | 
						|
def vocab():
 | 
						|
    return Vocab(lex_attr_getters={NORM: lambda s: s})
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture
 | 
						|
def parser(vocab):
 | 
						|
    parser = DependencyParser(vocab)
 | 
						|
    parser.cfg['token_vector_width'] = 8
 | 
						|
    parser.cfg['hidden_width'] = 30
 | 
						|
    parser.cfg['hist_size'] = 0
 | 
						|
    parser.add_label('left')
 | 
						|
    parser.begin_training([], **parser.cfg)
 | 
						|
    sgd = Adam(NumpyOps(), 0.001)
 | 
						|
 | 
						|
    for i in range(10):
 | 
						|
        losses = {}
 | 
						|
        doc = Doc(vocab, words=['a', 'b', 'c', 'd'])
 | 
						|
        gold = GoldParse(doc, heads=[1, 1, 3, 3],
 | 
						|
                deps=['left', 'ROOT', 'left', 'ROOT'])
 | 
						|
        parser.update([doc], [gold], sgd=sgd, losses=losses)
 | 
						|
    return parser
 | 
						|
 | 
						|
def test_init_parser(parser):
 | 
						|
    pass
 | 
						|
 | 
						|
# TODO: This is flakey, because it depends on what the parser first learns.
 | 
						|
@pytest.mark.xfail
 | 
						|
def test_add_label(parser):
 | 
						|
    doc = Doc(parser.vocab, words=['a', 'b', 'c', 'd'])
 | 
						|
    doc = parser(doc)
 | 
						|
    assert doc[0].head.i == 1
 | 
						|
    assert doc[0].dep_ == 'left'
 | 
						|
    assert doc[1].head.i == 1
 | 
						|
    assert doc[2].head.i == 3
 | 
						|
    assert doc[2].head.i == 3
 | 
						|
    parser.add_label('right')
 | 
						|
    doc = Doc(parser.vocab, words=['a', 'b', 'c', 'd'])
 | 
						|
    doc = parser(doc)
 | 
						|
    assert doc[0].head.i == 1
 | 
						|
    assert doc[0].dep_ == 'left'
 | 
						|
    assert doc[1].head.i == 1
 | 
						|
    assert doc[2].head.i == 3
 | 
						|
    assert doc[2].head.i == 3
 | 
						|
    sgd = Adam(NumpyOps(), 0.001)
 | 
						|
    for i in range(10):
 | 
						|
        losses = {}
 | 
						|
        doc = Doc(parser.vocab, words=['a', 'b', 'c', 'd'])
 | 
						|
        gold = GoldParse(doc, heads=[1, 1, 3, 3],
 | 
						|
                deps=['right', 'ROOT', 'left', 'ROOT'])
 | 
						|
        parser.update([doc], [gold], sgd=sgd, losses=losses)
 | 
						|
    doc = Doc(parser.vocab, words=['a', 'b', 'c', 'd'])
 | 
						|
    doc = parser(doc)
 | 
						|
    assert doc[0].dep_ == 'right'
 | 
						|
    assert doc[2].dep_ == 'left'
 | 
						|
 
 |