mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	* fix overflow error on windows * more documentation & logging fixes * md fix * 3 different limit parameters to play with execution time * bug fixes directory locations * small fixes * exclude dev test articles from prior probabilities stats * small fixes * filtering wikidata entities, removing numeric and meta items * adding aliases from wikidata also to the KB * fix adding WD aliases * adding also new aliases to previously added entities * fixing comma's * small doc fixes * adding subclassof filtering * append alias functionality in KB * prevent appending the same entity-alias pair * fix for appending WD aliases * remove date filter * remove unnecessary import * small corrections and reformatting * remove WD aliases for now (too slow) * removing numeric entities from training and evaluation * small fixes * shortcut during prediction if there is only one candidate * add counts and fscore logging, remove FP NER from evaluation * fix entity_linker.predict to take docs instead of single sentences * remove enumeration sentences from the WP dataset * entity_linker.update to process full doc instead of single sentence * spelling corrections and dump locations in readme * NLP IO fix * reading KB is unnecessary at the end of the pipeline * small logging fix * remove empty files
		
			
				
	
	
		
			162 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			162 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# coding: utf-8
 | 
						|
from __future__ import unicode_literals
 | 
						|
 | 
						|
import logging
 | 
						|
 | 
						|
from spacy.kb import KnowledgeBase
 | 
						|
 | 
						|
from bin.wiki_entity_linking.train_descriptions import EntityEncoder
 | 
						|
from bin.wiki_entity_linking import wiki_io as io
 | 
						|
 | 
						|
 | 
						|
logger = logging.getLogger(__name__)
 | 
						|
 | 
						|
 | 
						|
def create_kb(
 | 
						|
    nlp,
 | 
						|
    max_entities_per_alias,
 | 
						|
    min_entity_freq,
 | 
						|
    min_occ,
 | 
						|
    entity_def_path,
 | 
						|
    entity_descr_path,
 | 
						|
    entity_alias_path,
 | 
						|
    entity_freq_path,
 | 
						|
    prior_prob_path,
 | 
						|
    entity_vector_length,
 | 
						|
):
 | 
						|
    # Create the knowledge base from Wikidata entries
 | 
						|
    kb = KnowledgeBase(vocab=nlp.vocab, entity_vector_length=entity_vector_length)
 | 
						|
    entity_list, filtered_title_to_id = _define_entities(nlp, kb, entity_def_path, entity_descr_path, min_entity_freq, entity_freq_path, entity_vector_length)
 | 
						|
    _define_aliases(kb, entity_alias_path, entity_list, filtered_title_to_id, max_entities_per_alias, min_occ, prior_prob_path)
 | 
						|
    return kb
 | 
						|
 | 
						|
 | 
						|
def _define_entities(nlp, kb, entity_def_path, entity_descr_path, min_entity_freq, entity_freq_path, entity_vector_length):
 | 
						|
    # read the mappings from file
 | 
						|
    title_to_id = io.read_title_to_id(entity_def_path)
 | 
						|
    id_to_descr = io.read_id_to_descr(entity_descr_path)
 | 
						|
 | 
						|
    # check the length of the nlp vectors
 | 
						|
    if "vectors" in nlp.meta and nlp.vocab.vectors.size:
 | 
						|
        input_dim = nlp.vocab.vectors_length
 | 
						|
        logger.info("Loaded pretrained vectors of size %s" % input_dim)
 | 
						|
    else:
 | 
						|
        raise ValueError(
 | 
						|
            "The `nlp` object should have access to pretrained word vectors, "
 | 
						|
            " cf. https://spacy.io/usage/models#languages."
 | 
						|
        )
 | 
						|
 | 
						|
    logger.info("Filtering entities with fewer than {} mentions".format(min_entity_freq))
 | 
						|
    entity_frequencies = io.read_entity_to_count(entity_freq_path)
 | 
						|
    # filter the entities for in the KB by frequency, because there's just too much data (8M entities) otherwise
 | 
						|
    filtered_title_to_id, entity_list, description_list, frequency_list = get_filtered_entities(
 | 
						|
        title_to_id,
 | 
						|
        id_to_descr,
 | 
						|
        entity_frequencies,
 | 
						|
        min_entity_freq
 | 
						|
    )
 | 
						|
    logger.info("Kept {} entities from the set of {}".format(len(description_list), len(title_to_id.keys())))
 | 
						|
 | 
						|
    logger.info("Training entity encoder")
 | 
						|
    encoder = EntityEncoder(nlp, input_dim, entity_vector_length)
 | 
						|
    encoder.train(description_list=description_list, to_print=True)
 | 
						|
 | 
						|
    logger.info("Getting entity embeddings")
 | 
						|
    embeddings = encoder.apply_encoder(description_list)
 | 
						|
 | 
						|
    logger.info("Adding {} entities".format(len(entity_list)))
 | 
						|
    kb.set_entities(
 | 
						|
        entity_list=entity_list, freq_list=frequency_list, vector_list=embeddings
 | 
						|
    )
 | 
						|
    return entity_list, filtered_title_to_id
 | 
						|
 | 
						|
 | 
						|
def _define_aliases(kb, entity_alias_path, entity_list, filtered_title_to_id, max_entities_per_alias, min_occ, prior_prob_path):
 | 
						|
    logger.info("Adding aliases from Wikipedia and Wikidata")
 | 
						|
    _add_aliases(
 | 
						|
        kb,
 | 
						|
        entity_list=entity_list,
 | 
						|
        title_to_id=filtered_title_to_id,
 | 
						|
        max_entities_per_alias=max_entities_per_alias,
 | 
						|
        min_occ=min_occ,
 | 
						|
        prior_prob_path=prior_prob_path,
 | 
						|
    )
 | 
						|
 | 
						|
 | 
						|
def get_filtered_entities(title_to_id, id_to_descr, entity_frequencies,
 | 
						|
                          min_entity_freq: int = 10):
 | 
						|
    filtered_title_to_id = dict()
 | 
						|
    entity_list = []
 | 
						|
    description_list = []
 | 
						|
    frequency_list = []
 | 
						|
    for title, entity in title_to_id.items():
 | 
						|
        freq = entity_frequencies.get(title, 0)
 | 
						|
        desc = id_to_descr.get(entity, None)
 | 
						|
        if desc and freq > min_entity_freq:
 | 
						|
            entity_list.append(entity)
 | 
						|
            description_list.append(desc)
 | 
						|
            frequency_list.append(freq)
 | 
						|
            filtered_title_to_id[title] = entity
 | 
						|
    return filtered_title_to_id, entity_list, description_list, frequency_list
 | 
						|
 | 
						|
 | 
						|
def _add_aliases(kb, entity_list, title_to_id, max_entities_per_alias, min_occ, prior_prob_path):
 | 
						|
    wp_titles = title_to_id.keys()
 | 
						|
 | 
						|
    # adding aliases with prior probabilities
 | 
						|
    # we can read this file sequentially, it's sorted by alias, and then by count
 | 
						|
    logger.info("Adding WP aliases")
 | 
						|
    with prior_prob_path.open("r", encoding="utf8") as prior_file:
 | 
						|
        # skip header
 | 
						|
        prior_file.readline()
 | 
						|
        line = prior_file.readline()
 | 
						|
        previous_alias = None
 | 
						|
        total_count = 0
 | 
						|
        counts = []
 | 
						|
        entities = []
 | 
						|
        while line:
 | 
						|
            splits = line.replace("\n", "").split(sep="|")
 | 
						|
            new_alias = splits[0]
 | 
						|
            count = int(splits[1])
 | 
						|
            entity = splits[2]
 | 
						|
 | 
						|
            if new_alias != previous_alias and previous_alias:
 | 
						|
                # done reading the previous alias --> output
 | 
						|
                if len(entities) > 0:
 | 
						|
                    selected_entities = []
 | 
						|
                    prior_probs = []
 | 
						|
                    for ent_count, ent_string in zip(counts, entities):
 | 
						|
                        if ent_string in wp_titles:
 | 
						|
                            wd_id = title_to_id[ent_string]
 | 
						|
                            p_entity_givenalias = ent_count / total_count
 | 
						|
                            selected_entities.append(wd_id)
 | 
						|
                            prior_probs.append(p_entity_givenalias)
 | 
						|
 | 
						|
                    if selected_entities:
 | 
						|
                        try:
 | 
						|
                            kb.add_alias(
 | 
						|
                                alias=previous_alias,
 | 
						|
                                entities=selected_entities,
 | 
						|
                                probabilities=prior_probs,
 | 
						|
                            )
 | 
						|
                        except ValueError as e:
 | 
						|
                            logger.error(e)
 | 
						|
                total_count = 0
 | 
						|
                counts = []
 | 
						|
                entities = []
 | 
						|
 | 
						|
            total_count += count
 | 
						|
 | 
						|
            if len(entities) < max_entities_per_alias and count >= min_occ:
 | 
						|
                counts.append(count)
 | 
						|
                entities.append(entity)
 | 
						|
            previous_alias = new_alias
 | 
						|
 | 
						|
            line = prior_file.readline()
 | 
						|
 | 
						|
 | 
						|
def read_kb(nlp, kb_file):
 | 
						|
    kb = KnowledgeBase(vocab=nlp.vocab)
 | 
						|
    kb.load_bulk(kb_file)
 | 
						|
    return kb
 |