mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-30 23:47:31 +03:00 
			
		
		
		
	* Update with WIP * Update with WIP * Update with pipeline serialization * Update types and pipe factories * Add deep merge, tidy up and add tests * Fix pipe creation from config * Don't validate default configs on load * Update spacy/language.py Co-authored-by: Ines Montani <ines@ines.io> * Adjust factory/component meta error * Clean up factory args and remove defaults * Add test for failing empty dict defaults * Update pipeline handling and methods * provide KB as registry function instead of as object * small change in test to make functionality more clear * update example script for EL configuration * Fix typo * Simplify test * Simplify test * splitting pipes.pyx into separate files * moving default configs to each component file * fix batch_size type * removing default values from component constructors where possible (TODO: test 4725) * skip instead of xfail * Add test for config -> nlp with multiple instances * pipeline.pipes -> pipeline.pipe * Tidy up, document, remove kwargs * small cleanup/generalization for Tok2VecListener * use DEFAULT_UPSTREAM field * revert to avoid circular imports * Fix tests * Replace deprecated arg * Make model dirs require config * fix pickling of keyword-only arguments in constructor * WIP: clean up and integrate full config * Add helper to handle function args more reliably Now also includes keyword-only args * Fix config composition and serialization * Improve config debugging and add visual diff * Remove unused defaults and fix type * Remove pipeline and factories from meta * Update spacy/default_config.cfg Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/default_config.cfg * small UX edits * avoid printing stack trace for debug CLI commands * Add support for language-specific factories * specify the section of the config which holds the model to debug * WIP: add Language.from_config * Update with language data refactor WIP * Auto-format * Add backwards-compat handling for Language.factories * Update morphologizer.pyx * Fix morphologizer * Update and simplify lemmatizers * Fix Japanese tests * Port over tagger changes * Fix Chinese and tests * Update to latest Thinc * WIP: xfail first Russian lemmatizer test * Fix component-specific overrides * fix nO for output layers in debug_model * Fix default value * Fix tests and don't pass objects in config * Fix deep merging * Fix lemma lookup data registry Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed) * Add types * Add Vocab.from_config * Fix typo * Fix tests * Make config copying more elegant * Fix pipe analysis * Fix lemmatizers and is_base_form * WIP: move language defaults to config * Fix morphology type * Fix vocab * Remove comment * Update to latest Thinc * Add morph rules to config * Tidy up * Remove set_morphology option from tagger factory * Hack use_gpu * Move [pipeline] to top-level block and make [nlp.pipeline] list Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them * Fix use_gpu and resume in CLI * Auto-format * Remove resume from config * Fix formatting and error * [pipeline] -> [components] * Fix types * Fix tagger test: requires set_morphology? Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
		
			
				
	
	
		
			253 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			253 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from typing import Iterable, Tuple, Optional, Dict, List, Callable
 | |
| from thinc.api import get_array_module, Model, Optimizer, set_dropout_rate, Config
 | |
| import numpy
 | |
| 
 | |
| from .pipe import Pipe
 | |
| from ..language import Language
 | |
| from ..gold import Example
 | |
| from ..errors import Errors
 | |
| from .. import util
 | |
| from ..tokens import Doc
 | |
| from ..vocab import Vocab
 | |
| 
 | |
| 
 | |
| default_model_config = """
 | |
| [model]
 | |
| @architectures = "spacy.TextCat.v1"
 | |
| exclusive_classes = false
 | |
| pretrained_vectors = null
 | |
| width = 64
 | |
| conv_depth = 2
 | |
| embed_size = 2000
 | |
| window_size = 1
 | |
| ngram_size = 1
 | |
| dropout = null
 | |
| """
 | |
| DEFAULT_TEXTCAT_MODEL = Config().from_str(default_model_config)["model"]
 | |
| 
 | |
| bow_model_config = """
 | |
| [model]
 | |
| @architectures = "spacy.TextCatBOW.v1"
 | |
| exclusive_classes = false
 | |
| ngram_size: 1
 | |
| no_output_layer: false
 | |
| """
 | |
| 
 | |
| cnn_model_config = """
 | |
| [model]
 | |
| @architectures = "spacy.TextCatCNN.v1"
 | |
| exclusive_classes = false
 | |
| 
 | |
| [model.tok2vec]
 | |
| @architectures = "spacy.HashEmbedCNN.v1"
 | |
| pretrained_vectors = null
 | |
| width = 96
 | |
| depth = 4
 | |
| embed_size = 2000
 | |
| window_size = 1
 | |
| maxout_pieces = 3
 | |
| subword_features = true
 | |
| dropout = null
 | |
| """
 | |
| 
 | |
| 
 | |
| @Language.factory(
 | |
|     "textcat",
 | |
|     assigns=["doc.cats"],
 | |
|     default_config={"labels": [], "model": DEFAULT_TEXTCAT_MODEL},
 | |
| )
 | |
| def make_textcat(
 | |
|     nlp: Language, name: str, model: Model, labels: Iterable[str]
 | |
| ) -> "TextCategorizer":
 | |
|     return TextCategorizer(nlp.vocab, model, name, labels=labels)
 | |
| 
 | |
| 
 | |
| class TextCategorizer(Pipe):
 | |
|     """Pipeline component for text classification.
 | |
| 
 | |
|     DOCS: https://spacy.io/api/textcategorizer
 | |
|     """
 | |
| 
 | |
|     def __init__(
 | |
|         self,
 | |
|         vocab: Vocab,
 | |
|         model: Model,
 | |
|         name: str = "textcat",
 | |
|         *,
 | |
|         labels: Iterable[str],
 | |
|     ) -> None:
 | |
|         self.vocab = vocab
 | |
|         self.model = model
 | |
|         self.name = name
 | |
|         self._rehearsal_model = None
 | |
|         cfg = {"labels": labels}
 | |
|         self.cfg = dict(cfg)
 | |
| 
 | |
|     @property
 | |
|     def labels(self) -> Tuple[str]:
 | |
|         return tuple(self.cfg.setdefault("labels", []))
 | |
| 
 | |
|     def require_labels(self) -> None:
 | |
|         """Raise an error if the component's model has no labels defined."""
 | |
|         if not self.labels:
 | |
|             raise ValueError(Errors.E143.format(name=self.name))
 | |
| 
 | |
|     @labels.setter
 | |
|     def labels(self, value: Iterable[str]) -> None:
 | |
|         self.cfg["labels"] = tuple(value)
 | |
| 
 | |
|     def pipe(self, stream, batch_size=128):
 | |
|         for docs in util.minibatch(stream, size=batch_size):
 | |
|             scores = self.predict(docs)
 | |
|             self.set_annotations(docs, scores)
 | |
|             yield from docs
 | |
| 
 | |
|     def predict(self, docs: Iterable[Doc]):
 | |
|         tensors = [doc.tensor for doc in docs]
 | |
|         if not any(len(doc) for doc in docs):
 | |
|             # Handle cases where there are no tokens in any docs.
 | |
|             xp = get_array_module(tensors)
 | |
|             scores = xp.zeros((len(docs), len(self.labels)))
 | |
|             return scores
 | |
|         scores = self.model.predict(docs)
 | |
|         scores = self.model.ops.asarray(scores)
 | |
|         return scores
 | |
| 
 | |
|     def set_annotations(self, docs: Iterable[Doc], scores) -> None:
 | |
|         for i, doc in enumerate(docs):
 | |
|             for j, label in enumerate(self.labels):
 | |
|                 doc.cats[label] = float(scores[i, j])
 | |
| 
 | |
|     def update(
 | |
|         self,
 | |
|         examples: Iterable[Example],
 | |
|         *,
 | |
|         drop: float = 0.0,
 | |
|         set_annotations: bool = False,
 | |
|         sgd: Optional[Optimizer] = None,
 | |
|         losses: Optional[Dict[str, float]] = None,
 | |
|     ) -> Dict[str, float]:
 | |
|         if losses is None:
 | |
|             losses = {}
 | |
|         losses.setdefault(self.name, 0.0)
 | |
|         try:
 | |
|             if not any(len(eg.predicted) if eg.predicted else 0 for eg in examples):
 | |
|                 # Handle cases where there are no tokens in any docs.
 | |
|                 return losses
 | |
|         except AttributeError:
 | |
|             types = set([type(eg) for eg in examples])
 | |
|             raise TypeError(
 | |
|                 Errors.E978.format(name="TextCategorizer", method="update", types=types)
 | |
|             )
 | |
|         set_dropout_rate(self.model, drop)
 | |
|         scores, bp_scores = self.model.begin_update([eg.predicted for eg in examples])
 | |
|         loss, d_scores = self.get_loss(examples, scores)
 | |
|         bp_scores(d_scores)
 | |
|         if sgd is not None:
 | |
|             self.model.finish_update(sgd)
 | |
|         losses[self.name] += loss
 | |
|         if set_annotations:
 | |
|             docs = [eg.predicted for eg in examples]
 | |
|             self.set_annotations(docs, scores=scores)
 | |
|         return losses
 | |
| 
 | |
|     def rehearse(
 | |
|         self,
 | |
|         examples: Iterable[Example],
 | |
|         drop: float = 0.0,
 | |
|         sgd: Optional[Optimizer] = None,
 | |
|         losses: Optional[Dict[str, float]] = None,
 | |
|     ) -> None:
 | |
|         if self._rehearsal_model is None:
 | |
|             return
 | |
|         try:
 | |
|             docs = [eg.predicted for eg in examples]
 | |
|         except AttributeError:
 | |
|             types = set([type(eg) for eg in examples])
 | |
|             err = Errors.E978.format(
 | |
|                 name="TextCategorizer", method="rehearse", types=types
 | |
|             )
 | |
|             raise TypeError(err)
 | |
|         if not any(len(doc) for doc in docs):
 | |
|             # Handle cases where there are no tokens in any docs.
 | |
|             return
 | |
|         set_dropout_rate(self.model, drop)
 | |
|         scores, bp_scores = self.model.begin_update(docs)
 | |
|         target = self._rehearsal_model(examples)
 | |
|         gradient = scores - target
 | |
|         bp_scores(gradient)
 | |
|         if sgd is not None:
 | |
|             self.model.finish_update(sgd)
 | |
|         if losses is not None:
 | |
|             losses.setdefault(self.name, 0.0)
 | |
|             losses[self.name] += (gradient ** 2).sum()
 | |
| 
 | |
|     def _examples_to_truth(
 | |
|         self, examples: List[Example]
 | |
|     ) -> Tuple[numpy.ndarray, numpy.ndarray]:
 | |
|         truths = numpy.zeros((len(examples), len(self.labels)), dtype="f")
 | |
|         not_missing = numpy.ones((len(examples), len(self.labels)), dtype="f")
 | |
|         for i, eg in enumerate(examples):
 | |
|             for j, label in enumerate(self.labels):
 | |
|                 if label in eg.reference.cats:
 | |
|                     truths[i, j] = eg.reference.cats[label]
 | |
|                 else:
 | |
|                     not_missing[i, j] = 0.0
 | |
|         truths = self.model.ops.asarray(truths)
 | |
|         return truths, not_missing
 | |
| 
 | |
|     def get_loss(self, examples: Iterable[Example], scores) -> Tuple[float, float]:
 | |
|         truths, not_missing = self._examples_to_truth(examples)
 | |
|         not_missing = self.model.ops.asarray(not_missing)
 | |
|         d_scores = (scores - truths) / scores.shape[0]
 | |
|         d_scores *= not_missing
 | |
|         mean_square_error = (d_scores ** 2).sum(axis=1).mean()
 | |
|         return float(mean_square_error), d_scores
 | |
| 
 | |
|     def add_label(self, label: str) -> int:
 | |
|         if not isinstance(label, str):
 | |
|             raise ValueError(Errors.E187)
 | |
|         if label in self.labels:
 | |
|             return 0
 | |
|         if self.model.has_dim("nO"):
 | |
|             # This functionality was available previously, but was broken.
 | |
|             # The problem is that we resize the last layer, but the last layer
 | |
|             # is actually just an ensemble. We're not resizing the child layers
 | |
|             # - a huge problem.
 | |
|             raise ValueError(Errors.E116)
 | |
|             # smaller = self.model._layers[-1]
 | |
|             # larger = Linear(len(self.labels)+1, smaller.nI)
 | |
|             # copy_array(larger.W[:smaller.nO], smaller.W)
 | |
|             # copy_array(larger.b[:smaller.nO], smaller.b)
 | |
|             # self.model._layers[-1] = larger
 | |
|         self.labels = tuple(list(self.labels) + [label])
 | |
|         return 1
 | |
| 
 | |
|     def begin_training(
 | |
|         self,
 | |
|         get_examples: Callable = lambda: [],
 | |
|         pipeline: Optional[List[Tuple[str, Callable[[Doc], Doc]]]] = None,
 | |
|         sgd: Optional[Optimizer] = None,
 | |
|     ) -> Optimizer:
 | |
|         # TODO: begin_training is not guaranteed to see all data / labels ?
 | |
|         examples = list(get_examples())
 | |
|         for example in examples:
 | |
|             try:
 | |
|                 y = example.y
 | |
|             except AttributeError:
 | |
|                 err = Errors.E978.format(
 | |
|                     name="TextCategorizer", method="update", types=type(example)
 | |
|                 )
 | |
|                 raise TypeError(err)
 | |
|             for cat in y.cats:
 | |
|                 self.add_label(cat)
 | |
|         self.require_labels()
 | |
|         docs = [Doc(Vocab(), words=["hello"])]
 | |
|         truths, _ = self._examples_to_truth(examples)
 | |
|         self.set_output(len(self.labels))
 | |
|         util.link_vectors_to_models(self.vocab)
 | |
|         self.model.initialize(X=docs, Y=truths)
 | |
|         if sgd is None:
 | |
|             sgd = self.create_optimizer()
 | |
|         return sgd
 |