spaCy/spacy/ml/models/tok2vec.py
2020-07-06 17:50:21 +02:00

372 lines
11 KiB
Python

from thinc.api import chain, clone, concatenate, with_array, uniqued
from thinc.api import Model, noop, with_padded, Maxout, expand_window
from thinc.api import HashEmbed, StaticVectors, PyTorchLSTM
from thinc.api import residual, LayerNorm, FeatureExtractor, Mish
from ... import util
from ...util import registry
from ...ml import _character_embed
from ...pipeline.tok2vec import Tok2VecListener
from ...attrs import ID, ORTH, NORM, PREFIX, SUFFIX, SHAPE
@registry.architectures.register("spacy.Tok2VecTensors.v1")
def tok2vec_tensors_v1(width):
tok2vec = Tok2VecListener("tok2vec", width=width)
return tok2vec
@registry.architectures.register("spacy.VocabVectors.v1")
def get_vocab_vectors(name):
nlp = util.load_model(name)
return nlp.vocab.vectors
@registry.architectures.register("spacy.Tok2Vec.v1")
def Tok2Vec(extract, embed, encode):
field_size = 0
if encode.attrs.get("receptive_field", None):
field_size = encode.attrs["receptive_field"]
with Model.define_operators({">>": chain, "|": concatenate}):
tok2vec = extract >> with_array(embed >> encode, pad=field_size)
tok2vec.set_dim("nO", encode.get_dim("nO"))
tok2vec.set_ref("embed", embed)
tok2vec.set_ref("encode", encode)
return tok2vec
@registry.architectures.register("spacy.Doc2Feats.v1")
def Doc2Feats(columns):
return FeatureExtractor(columns)
@registry.architectures.register("spacy.HashEmbedCNN.v1")
def hash_embed_cnn(
pretrained_vectors,
width,
depth,
embed_size,
maxout_pieces,
window_size,
subword_features,
dropout,
):
# Does not use character embeddings: set to False by default
return build_Tok2Vec_model(
width=width,
embed_size=embed_size,
pretrained_vectors=pretrained_vectors,
conv_depth=depth,
bilstm_depth=0,
maxout_pieces=maxout_pieces,
window_size=window_size,
subword_features=subword_features,
char_embed=False,
nM=0,
nC=0,
dropout=dropout,
)
@registry.architectures.register("spacy.HashCharEmbedCNN.v1")
def hash_charembed_cnn(
pretrained_vectors,
width,
depth,
embed_size,
maxout_pieces,
window_size,
nM,
nC,
dropout,
):
# Allows using character embeddings by setting nC, nM and char_embed=True
return build_Tok2Vec_model(
width=width,
embed_size=embed_size,
pretrained_vectors=pretrained_vectors,
conv_depth=depth,
bilstm_depth=0,
maxout_pieces=maxout_pieces,
window_size=window_size,
subword_features=False,
char_embed=True,
nM=nM,
nC=nC,
dropout=dropout,
)
@registry.architectures.register("spacy.HashEmbedBiLSTM.v1")
def hash_embed_bilstm_v1(
pretrained_vectors,
width,
depth,
embed_size,
subword_features,
maxout_pieces,
dropout,
):
# Does not use character embeddings: set to False by default
return build_Tok2Vec_model(
width=width,
embed_size=embed_size,
pretrained_vectors=pretrained_vectors,
bilstm_depth=depth,
conv_depth=0,
maxout_pieces=maxout_pieces,
window_size=1,
subword_features=subword_features,
char_embed=False,
nM=0,
nC=0,
dropout=dropout,
)
@registry.architectures.register("spacy.HashCharEmbedBiLSTM.v1")
def hash_char_embed_bilstm_v1(
pretrained_vectors, width, depth, embed_size, maxout_pieces, nM, nC, dropout
):
# Allows using character embeddings by setting nC, nM and char_embed=True
return build_Tok2Vec_model(
width=width,
embed_size=embed_size,
pretrained_vectors=pretrained_vectors,
bilstm_depth=depth,
conv_depth=0,
maxout_pieces=maxout_pieces,
window_size=1,
subword_features=False,
char_embed=True,
nM=nM,
nC=nC,
dropout=dropout,
)
@registry.architectures.register("spacy.LayerNormalizedMaxout.v1")
def LayerNormalizedMaxout(width, maxout_pieces):
return Maxout(nO=width, nP=maxout_pieces, dropout=0.0, normalize=True)
@registry.architectures.register("spacy.MultiHashEmbed.v1")
def MultiHashEmbed(
columns, width, rows, use_subwords, pretrained_vectors, mix, dropout
):
norm = HashEmbed(nO=width, nV=rows, column=columns.index("NORM"), dropout=dropout)
if use_subwords:
prefix = HashEmbed(
nO=width, nV=rows // 2, column=columns.index("PREFIX"), dropout=dropout
)
suffix = HashEmbed(
nO=width, nV=rows // 2, column=columns.index("SUFFIX"), dropout=dropout
)
shape = HashEmbed(
nO=width, nV=rows // 2, column=columns.index("SHAPE"), dropout=dropout
)
if pretrained_vectors:
glove = StaticVectors(
vectors=pretrained_vectors.data,
nO=width,
column=columns.index(ID),
dropout=dropout,
)
with Model.define_operators({">>": chain, "|": concatenate}):
if not use_subwords and not pretrained_vectors:
embed_layer = norm
else:
if use_subwords and pretrained_vectors:
concat_columns = glove | norm | prefix | suffix | shape
elif use_subwords:
concat_columns = norm | prefix | suffix | shape
else:
concat_columns = glove | norm
embed_layer = uniqued(concat_columns >> mix, column=columns.index("ORTH"))
return embed_layer
@registry.architectures.register("spacy.CharacterEmbed.v1")
def CharacterEmbed(columns, width, rows, nM, nC, features, dropout):
norm = HashEmbed(nO=width, nV=rows, column=columns.index("NORM"), dropout=dropout)
chr_embed = _character_embed.CharacterEmbed(nM=nM, nC=nC)
with Model.define_operators({">>": chain, "|": concatenate}):
embed_layer = chr_embed | features >> with_array(norm)
embed_layer.set_dim("nO", nM * nC + width)
return embed_layer
@registry.architectures.register("spacy.MaxoutWindowEncoder.v1")
def MaxoutWindowEncoder(width, window_size, maxout_pieces, depth):
cnn = chain(
expand_window(window_size=window_size),
Maxout(
nO=width,
nI=width * ((window_size * 2) + 1),
nP=maxout_pieces,
dropout=0.0,
normalize=True,
),
)
model = clone(residual(cnn), depth)
model.set_dim("nO", width)
model.attrs["receptive_field"] = window_size * depth
return model
@registry.architectures.register("spacy.MishWindowEncoder.v1")
def MishWindowEncoder(width, window_size, depth):
cnn = chain(
expand_window(window_size=window_size),
Mish(nO=width, nI=width * ((window_size * 2) + 1)),
LayerNorm(width),
)
model = clone(residual(cnn), depth)
model.set_dim("nO", width)
return model
@registry.architectures.register("spacy.TorchBiLSTMEncoder.v1")
def TorchBiLSTMEncoder(width, depth):
import torch.nn
# TODO FIX
from thinc.api import PyTorchRNNWrapper
if depth == 0:
return noop()
return with_padded(
PyTorchRNNWrapper(torch.nn.LSTM(width, width // 2, depth, bidirectional=True))
)
def build_Tok2Vec_model(
width,
embed_size,
pretrained_vectors,
window_size,
maxout_pieces,
subword_features,
char_embed,
nM,
nC,
conv_depth,
bilstm_depth,
dropout,
) -> Model:
if char_embed:
subword_features = False
cols = [ID, NORM, PREFIX, SUFFIX, SHAPE, ORTH]
with Model.define_operators({">>": chain, "|": concatenate, "**": clone}):
norm = HashEmbed(
nO=width, nV=embed_size, column=cols.index(NORM), dropout=None,
seed=0
)
if subword_features:
prefix = HashEmbed(
nO=width, nV=embed_size // 2, column=cols.index(PREFIX), dropout=None,
seed=1
)
suffix = HashEmbed(
nO=width, nV=embed_size // 2, column=cols.index(SUFFIX), dropout=None,
seed=2
)
shape = HashEmbed(
nO=width, nV=embed_size // 2, column=cols.index(SHAPE), dropout=None,
seed=3
)
else:
prefix, suffix, shape = (None, None, None)
if pretrained_vectors is not None:
glove = StaticVectors(
vectors=pretrained_vectors.data,
nO=width,
column=cols.index(ID),
dropout=dropout,
)
if subword_features:
columns = 5
embed = uniqued(
(glove | norm | prefix | suffix | shape)
>> Maxout(
nO=width,
nI=width * columns,
nP=3,
dropout=0.0,
normalize=True,
),
column=cols.index(ORTH),
)
else:
columns = 2
embed = uniqued(
(glove | norm)
>> Maxout(
nO=width,
nI=width * columns,
nP=3,
dropout=0.0,
normalize=True,
),
column=cols.index(ORTH),
)
elif subword_features:
columns = 4
embed = uniqued(
concatenate(norm, prefix, suffix, shape)
>> Maxout(
nO=width,
nI=width * columns,
nP=3,
dropout=0.0,
normalize=True,
),
column=cols.index(ORTH),
)
elif char_embed:
embed = _character_embed.CharacterEmbed(nM=nM, nC=nC) | FeatureExtractor(
cols
) >> with_array(norm)
reduce_dimensions = Maxout(
nO=width,
nI=nM * nC + width,
nP=3,
dropout=0.0,
normalize=True,
)
else:
embed = norm
convolution = residual(
expand_window(window_size=window_size)
>> Maxout(
nO=width,
nI=width * ((window_size * 2) + 1),
nP=maxout_pieces,
dropout=0.0,
normalize=True,
)
)
if char_embed:
tok2vec = embed >> with_array(
reduce_dimensions >> convolution ** conv_depth, pad=conv_depth
)
else:
tok2vec = FeatureExtractor(cols) >> with_array(
embed >> convolution ** conv_depth, pad=conv_depth
)
if bilstm_depth >= 1:
tok2vec = tok2vec >> PyTorchLSTM(
nO=width, nI=width, depth=bilstm_depth, bi=True
)
if tok2vec.has_dim("nO") is not False:
tok2vec.set_dim("nO", width)
tok2vec.set_ref("embed", embed)
return tok2vec