mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-19 05:54:11 +03:00
554df9ef20
* Rename all MDX file to `.mdx`
* Lock current node version (#11885)
* Apply Prettier (#11996)
* Minor website fixes (#11974) [ci skip]
* fix table
* Migrate to Next WEB-17 (#12005)
* Initial commit
* Run `npx create-next-app@13 next-blog`
* Install MDX packages
Following: 77b5f79a4d/packages/next-mdx/readme.md
* Add MDX to Next
* Allow Next to handle `.md` and `.mdx` files.
* Add VSCode extension recommendation
* Disabled TypeScript strict mode for now
* Add prettier
* Apply Prettier to all files
* Make sure to use correct Node version
* Add basic implementation for `MDXRemote`
* Add experimental Rust MDX parser
* Add `/public`
* Add SASS support
* Remove default pages and styling
* Convert to module
This allows to use `import/export` syntax
* Add import for custom components
* Add ability to load plugins
* Extract function
This will make the next commit easier to read
* Allow to handle directories for page creation
* Refactoring
* Allow to parse subfolders for pages
* Extract logic
* Redirect `index.mdx` to parent directory
* Disabled ESLint during builds
* Disabled typescript during build
* Remove Gatsby from `README.md`
* Rephrase Docker part of `README.md`
* Update project structure in `README.md`
* Move and rename plugins
* Update plugin for wrapping sections
* Add dependencies for plugin
* Use plugin
* Rename wrapper type
* Simplify unnessary adding of id to sections
The slugified section ids are useless, because they can not be referenced anywhere anyway. The navigation only works if the section has the same id as the heading.
* Add plugin for custom attributes on Markdown elements
* Add plugin to readd support for tables
* Add plugin to fix problem with wrapped images
For more details see this issue: https://github.com/mdx-js/mdx/issues/1798
* Add necessary meta data to pages
* Install necessary dependencies
* Remove outdated MDX handling
* Remove reliance on `InlineList`
* Use existing Remark components
* Remove unallowed heading
Before `h1` components where not overwritten and would never have worked and they aren't used anywhere either.
* Add missing components to MDX
* Add correct styling
* Fix broken list
* Fix broken CSS classes
* Implement layout
* Fix links
* Fix broken images
* Fix pattern image
* Fix heading attributes
* Rename heading attribute
`new` was causing some weird issue, so renaming it to `version`
* Update comment syntax in MDX
* Merge imports
* Fix markdown rendering inside components
* Add model pages
* Simplify anchors
* Fix default value for theme
* Add Universe index page
* Add Universe categories
* Add Universe projects
* Fix Next problem with copy
Next complains when the server renders something different then the client, therfor we move the differing logic to `useEffect`
* Fix improper component nesting
Next doesn't allow block elements inside a `<p>`
* Replace landing page MDX with page component
* Remove inlined iframe content
* Remove ability to inline HTML content in iFrames
* Remove MDX imports
* Fix problem with image inside link in MDX
* Escape character for MDX
* Fix unescaped characters in MDX
* Fix headings with logo
* Allow to export static HTML pages
* Add prebuild script
This command is automatically run by Next
* Replace `svg-loader` with `react-inlinesvg`
`svg-loader` is no longer maintained
* Fix ESLint `react-hooks/exhaustive-deps`
* Fix dropdowns
* Change code language from `cli` to `bash`
* Remove unnessary language `none`
* Fix invalid code language
`markdown_` with an underscore was used to basically turn of syntax highlighting, but using unknown languages know throws an error.
* Enable code blocks plugin
* Readd `InlineCode` component
MDX2 removed the `inlineCode` component
> The special component name `inlineCode` was removed, we recommend to use `pre` for the block version of code, and code for both the block and inline versions
Source: https://mdxjs.com/migrating/v2/#update-mdx-content
* Remove unused code
* Extract function to own file
* Fix code syntax highlighting
* Update syntax for code block meta data
* Remove unused prop
* Fix internal link recognition
There is a problem with regex between Node and browser, and since Next runs the component on both, this create an error.
`Prop `rel` did not match. Server: "null" Client: "noopener nofollow noreferrer"`
This simplifies the implementation and fixes the above error.
* Replace `react-helmet` with `next/head`
* Fix `className` problem for JSX component
* Fix broken bold markdown
* Convert file to `.mjs` to be used by Node process
* Add plugin to replace strings
* Fix custom table row styling
* Fix problem with `span` inside inline `code`
React doesn't allow a `span` inside an inline `code` element and throws an error in dev mode.
* Add `_document` to be able to customize `<html>` and `<body>`
* Add `lang="en"`
* Store Netlify settings in file
This way we don't need to update via Netlify UI, which can be tricky if changing build settings.
* Add sitemap
* Add Smartypants
* Add PWA support
* Add `manifest.webmanifest`
* Fix bug with anchor links after reloading
There was no need for the previous implementation, since the browser handles this nativly. Additional the manual scrolling into view was actually broken, because the heading would disappear behind the menu bar.
* Rename custom event
I was googeling for ages to find out what kind of event `inview` is, only to figure out it was a custom event with a name that sounds pretty much like a native one. 🫠
* Fix missing comment syntax highlighting
* Refactor Quickstart component
The previous implementation was hidding the irrelevant lines via data-props and dynamically generated CSS. This created problems with Next and was also hard to follow. CSS was used to do what React is supposed to handle.
The new implementation simplfy filters the list of children (React elements) via their props.
* Fix syntax highlighting for Training Quickstart
* Unify code rendering
* Improve error logging in Juniper
* Fix Juniper component
* Automatically generate "Read Next" link
* Add Plausible
* Use recent DocSearch component and adjust styling
* Fix images
* Turn of image optimization
> Image Optimization using Next.js' default loader is not compatible with `next export`.
We currently deploy to Netlify via `next export`
* Dont build pages starting with `_`
* Remove unused files
* Add Next plugin to Netlify
* Fix button layout
MDX automatically adds `p` tags around text on a new line and Prettier wants to put the text on a new line. Hacking with JSX string.
* Add 404 page
* Apply Prettier
* Update Prettier for `package.json`
Next sometimes wants to patch `package-lock.json`. The old Prettier setting indended with 4 spaces, but Next always indends with 2 spaces. Since `npm install` automatically uses the indendation from `package.json` for `package-lock.json` and to avoid the format switching back and forth, both files are now set to 2 spaces.
* Apply Next patch to `package-lock.json`
When starting the dev server Next would warn `warn - Found lockfile missing swc dependencies, patching...` and update the `package-lock.json`. These are the patched changes.
* fix link
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* small backslash fixes
* adjust to new style
Co-authored-by: Marcus Blättermann <marcus@essenmitsosse.de>
329 lines
16 KiB
Plaintext
329 lines
16 KiB
Plaintext
---
|
|
title: Lemmatizer
|
|
tag: class
|
|
source: spacy/pipeline/lemmatizer.py
|
|
version: 3
|
|
teaser: 'Pipeline component for lemmatization'
|
|
api_string_name: lemmatizer
|
|
api_trainable: false
|
|
---
|
|
|
|
Component for assigning base forms to tokens using rules based on part-of-speech
|
|
tags, or lookup tables. Different [`Language`](/api/language) subclasses can
|
|
implement their own lemmatizer components via
|
|
[language-specific factories](/usage/processing-pipelines#factories-language).
|
|
The default data used is provided by the
|
|
[`spacy-lookups-data`](https://github.com/explosion/spacy-lookups-data)
|
|
extension package.
|
|
|
|
For a trainable lemmatizer, see [`EditTreeLemmatizer`](/api/edittreelemmatizer).
|
|
|
|
<Infobox variant="warning" title="New in v3.0">
|
|
|
|
As of v3.0, the `Lemmatizer` is a **standalone pipeline component** that can be
|
|
added to your pipeline, and not a hidden part of the vocab that runs behind the
|
|
scenes. This makes it easier to customize how lemmas should be assigned in your
|
|
pipeline.
|
|
|
|
If the lemmatization mode is set to `"rule"`, which requires coarse-grained POS
|
|
(`Token.pos`) to be assigned, make sure a [`Tagger`](/api/tagger),
|
|
[`Morphologizer`](/api/morphologizer) or another component assigning POS is
|
|
available in the pipeline and runs _before_ the lemmatizer.
|
|
|
|
</Infobox>
|
|
|
|
## Assigned Attributes {id="assigned-attributes"}
|
|
|
|
Lemmas generated by rules or predicted will be saved to `Token.lemma`.
|
|
|
|
| Location | Value |
|
|
| -------------- | ------------------------- |
|
|
| `Token.lemma` | The lemma (hash). ~~int~~ |
|
|
| `Token.lemma_` | The lemma. ~~str~~ |
|
|
|
|
## Config and implementation
|
|
|
|
The default config is defined by the pipeline component factory and describes
|
|
how the component should be configured. You can override its settings via the
|
|
`config` argument on [`nlp.add_pipe`](/api/language#add_pipe) or in your
|
|
[`config.cfg` for training](/usage/training#config). For examples of the lookups
|
|
data format used by the lookup and rule-based lemmatizers, see
|
|
[`spacy-lookups-data`](https://github.com/explosion/spacy-lookups-data).
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> config = {"mode": "rule"}
|
|
> nlp.add_pipe("lemmatizer", config=config)
|
|
> ```
|
|
|
|
| Setting | Description |
|
|
| -------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
|
| `mode` | The lemmatizer mode, e.g. `"lookup"` or `"rule"`. Defaults to `lookup` if no language-specific lemmatizer is available (see the following table). ~~str~~ |
|
|
| `overwrite` | Whether to overwrite existing lemmas. Defaults to `False`. ~~bool~~ |
|
|
| `model` | **Not yet implemented:** the model to use. ~~Model~~ |
|
|
| _keyword-only_ | |
|
|
| `scorer` | The scoring method. Defaults to [`Scorer.score_token_attr`](/api/scorer#score_token_attr) for the attribute `"lemma"`. ~~Optional[Callable]~~ |
|
|
|
|
Many languages specify a default lemmatizer mode other than `lookup` if a better
|
|
lemmatizer is available. The lemmatizer modes `rule` and `pos_lookup` require
|
|
[`token.pos`](/api/token) from a previous pipeline component (see example
|
|
pipeline configurations in the
|
|
[pretrained pipeline design details](/models#design-cnn)) or rely on third-party
|
|
libraries (`pymorphy3`).
|
|
|
|
| Language | Default Mode |
|
|
| -------- | ------------ |
|
|
| `bn` | `rule` |
|
|
| `ca` | `pos_lookup` |
|
|
| `el` | `rule` |
|
|
| `en` | `rule` |
|
|
| `es` | `rule` |
|
|
| `fa` | `rule` |
|
|
| `fr` | `rule` |
|
|
| `it` | `pos_lookup` |
|
|
| `mk` | `rule` |
|
|
| `nb` | `rule` |
|
|
| `nl` | `rule` |
|
|
| `pl` | `pos_lookup` |
|
|
| `ru` | `pymorphy3` |
|
|
| `sv` | `rule` |
|
|
| `uk` | `pymorphy3` |
|
|
|
|
```python
|
|
%%GITHUB_SPACY/spacy/pipeline/lemmatizer.py
|
|
```
|
|
|
|
## Lemmatizer.\_\_init\_\_ {id="init",tag="method"}
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> # Construction via add_pipe with default model
|
|
> lemmatizer = nlp.add_pipe("lemmatizer")
|
|
>
|
|
> # Construction via add_pipe with custom settings
|
|
> config = {"mode": "rule", "overwrite": True}
|
|
> lemmatizer = nlp.add_pipe("lemmatizer", config=config)
|
|
> ```
|
|
|
|
Create a new pipeline instance. In your application, you would normally use a
|
|
shortcut for this and instantiate the component using its string name and
|
|
[`nlp.add_pipe`](/api/language#add_pipe).
|
|
|
|
| Name | Description |
|
|
| -------------- | --------------------------------------------------------------------------------------------------- |
|
|
| `vocab` | The shared vocabulary. ~~Vocab~~ |
|
|
| `model` | **Not yet implemented:** The model to use. ~~Model~~ |
|
|
| `name` | String name of the component instance. Used to add entries to the `losses` during training. ~~str~~ |
|
|
| _keyword-only_ | |
|
|
| mode | The lemmatizer mode, e.g. `"lookup"` or `"rule"`. Defaults to `"lookup"`. ~~str~~ |
|
|
| overwrite | Whether to overwrite existing lemmas. ~~bool~~ |
|
|
|
|
## Lemmatizer.\_\_call\_\_ {id="call",tag="method"}
|
|
|
|
Apply the pipe to one document. The document is modified in place, and returned.
|
|
This usually happens under the hood when the `nlp` object is called on a text
|
|
and all pipeline components are applied to the `Doc` in order.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> doc = nlp("This is a sentence.")
|
|
> lemmatizer = nlp.add_pipe("lemmatizer")
|
|
> # This usually happens under the hood
|
|
> processed = lemmatizer(doc)
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| ----------- | -------------------------------- |
|
|
| `doc` | The document to process. ~~Doc~~ |
|
|
| **RETURNS** | The processed document. ~~Doc~~ |
|
|
|
|
## Lemmatizer.pipe {id="pipe",tag="method"}
|
|
|
|
Apply the pipe to a stream of documents. This usually happens under the hood
|
|
when the `nlp` object is called on a text and all pipeline components are
|
|
applied to the `Doc` in order.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> lemmatizer = nlp.add_pipe("lemmatizer")
|
|
> for doc in lemmatizer.pipe(docs, batch_size=50):
|
|
> pass
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| -------------- | ------------------------------------------------------------- |
|
|
| `stream` | A stream of documents. ~~Iterable[Doc]~~ |
|
|
| _keyword-only_ | |
|
|
| `batch_size` | The number of documents to buffer. Defaults to `128`. ~~int~~ |
|
|
| **YIELDS** | The processed documents in order. ~~Doc~~ |
|
|
|
|
## Lemmatizer.initialize {id="initialize",tag="method"}
|
|
|
|
Initialize the lemmatizer and load any data resources. This method is typically
|
|
called by [`Language.initialize`](/api/language#initialize) and lets you
|
|
customize arguments it receives via the
|
|
[`[initialize.components]`](/api/data-formats#config-initialize) block in the
|
|
config. The loading only happens during initialization, typically before
|
|
training. At runtime, all data is loaded from disk.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> lemmatizer = nlp.add_pipe("lemmatizer")
|
|
> lemmatizer.initialize(lookups=lookups)
|
|
> ```
|
|
>
|
|
> ```ini
|
|
> ### config.cfg
|
|
> [initialize.components.lemmatizer]
|
|
>
|
|
> [initialize.components.lemmatizer.lookups]
|
|
> @misc = "load_my_lookups.v1"
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| -------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
|
| `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. Defaults to `None`. ~~Optional[Callable[[], Iterable[Example]]]~~ |
|
|
| _keyword-only_ | |
|
|
| `nlp` | The current `nlp` object. Defaults to `None`. ~~Optional[Language]~~ |
|
|
| `lookups` | The lookups object containing the tables such as `"lemma_rules"`, `"lemma_index"`, `"lemma_exc"` and `"lemma_lookup"`. If `None`, default tables are loaded from [`spacy-lookups-data`](https://github.com/explosion/spacy-lookups-data). Defaults to `None`. ~~Optional[Lookups]~~ |
|
|
|
|
## Lemmatizer.lookup_lemmatize {id="lookup_lemmatize",tag="method"}
|
|
|
|
Lemmatize a token using a lookup-based approach. If no lemma is found, the
|
|
original string is returned.
|
|
|
|
| Name | Description |
|
|
| ----------- | --------------------------------------------------- |
|
|
| `token` | The token to lemmatize. ~~Token~~ |
|
|
| **RETURNS** | A list containing one or more lemmas. ~~List[str]~~ |
|
|
|
|
## Lemmatizer.rule_lemmatize {id="rule_lemmatize",tag="method"}
|
|
|
|
Lemmatize a token using a rule-based approach. Typically relies on POS tags.
|
|
|
|
| Name | Description |
|
|
| ----------- | --------------------------------------------------- |
|
|
| `token` | The token to lemmatize. ~~Token~~ |
|
|
| **RETURNS** | A list containing one or more lemmas. ~~List[str]~~ |
|
|
|
|
## Lemmatizer.is_base_form {id="is_base_form",tag="method"}
|
|
|
|
Check whether we're dealing with an uninflected paradigm, so we can avoid
|
|
lemmatization entirely.
|
|
|
|
| Name | Description |
|
|
| ----------- | ---------------------------------------------------------------------------------------------------------------- |
|
|
| `token` | The token to analyze. ~~Token~~ |
|
|
| **RETURNS** | Whether the token's attributes (e.g., part-of-speech tag, morphological features) describe a base form. ~~bool~~ |
|
|
|
|
## Lemmatizer.get_lookups_config {id="get_lookups_config",tag="classmethod"}
|
|
|
|
Returns the lookups configuration settings for a given mode for use in
|
|
[`Lemmatizer.load_lookups`](/api/lemmatizer#load_lookups).
|
|
|
|
| Name | Description |
|
|
| ----------- | -------------------------------------------------------------------------------------- |
|
|
| `mode` | The lemmatizer mode. ~~str~~ |
|
|
| **RETURNS** | The required table names and the optional table names. ~~Tuple[List[str], List[str]]~~ |
|
|
|
|
## Lemmatizer.to_disk {id="to_disk",tag="method"}
|
|
|
|
Serialize the pipe to disk.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> lemmatizer = nlp.add_pipe("lemmatizer")
|
|
> lemmatizer.to_disk("/path/to/lemmatizer")
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------ |
|
|
| `path` | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
|
|
| _keyword-only_ | |
|
|
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
|
|
|
|
## Lemmatizer.from_disk {id="from_disk",tag="method"}
|
|
|
|
Load the pipe from disk. Modifies the object in place and returns it.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> lemmatizer = nlp.add_pipe("lemmatizer")
|
|
> lemmatizer.from_disk("/path/to/lemmatizer")
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| -------------- | ----------------------------------------------------------------------------------------------- |
|
|
| `path` | A path to a directory. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
|
|
| _keyword-only_ | |
|
|
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
|
|
| **RETURNS** | The modified `Lemmatizer` object. ~~Lemmatizer~~ |
|
|
|
|
## Lemmatizer.to_bytes {id="to_bytes",tag="method"}
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> lemmatizer = nlp.add_pipe("lemmatizer")
|
|
> lemmatizer_bytes = lemmatizer.to_bytes()
|
|
> ```
|
|
|
|
Serialize the pipe to a bytestring.
|
|
|
|
| Name | Description |
|
|
| -------------- | ------------------------------------------------------------------------------------------- |
|
|
| _keyword-only_ | |
|
|
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
|
|
| **RETURNS** | The serialized form of the `Lemmatizer` object. ~~bytes~~ |
|
|
|
|
## Lemmatizer.from_bytes {id="from_bytes",tag="method"}
|
|
|
|
Load the pipe from a bytestring. Modifies the object in place and returns it.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> lemmatizer_bytes = lemmatizer.to_bytes()
|
|
> lemmatizer = nlp.add_pipe("lemmatizer")
|
|
> lemmatizer.from_bytes(lemmatizer_bytes)
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| -------------- | ------------------------------------------------------------------------------------------- |
|
|
| `bytes_data` | The data to load from. ~~bytes~~ |
|
|
| _keyword-only_ | |
|
|
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
|
|
| **RETURNS** | The `Lemmatizer` object. ~~Lemmatizer~~ |
|
|
|
|
## Attributes {id="attributes"}
|
|
|
|
| Name | Description |
|
|
| --------- | ------------------------------------------- |
|
|
| `vocab` | The shared [`Vocab`](/api/vocab). ~~Vocab~~ |
|
|
| `lookups` | The lookups object. ~~Lookups~~ |
|
|
| `mode` | The lemmatizer mode. ~~str~~ |
|
|
|
|
## Serialization fields {id="serialization-fields"}
|
|
|
|
During serialization, spaCy will export several data fields used to restore
|
|
different aspects of the object. If needed, you can exclude them from
|
|
serialization by passing in the string names via the `exclude` argument.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> data = lemmatizer.to_disk("/path", exclude=["vocab"])
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| --------- | ---------------------------------------------------- |
|
|
| `vocab` | The shared [`Vocab`](/api/vocab). |
|
|
| `lookups` | The lookups. You usually don't want to exclude this. |
|