19650ebb52
* enable fuzzy matching * add fuzzy param to EntityMatcher * include rapidfuzz_capi not yet used * fix type * add FUZZY predicate * add fuzzy attribute list * fix type properly * tidying * remove unnecessary dependency * handle fuzzy sets * simplify fuzzy sets * case fix * switch to FUZZYn predicates use Levenshtein distance. remove fuzzy param. remove rapidfuzz_capi. * revert changes added for fuzzy param * switch to polyleven (Python package) * enable fuzzy matching * add fuzzy param to EntityMatcher * include rapidfuzz_capi not yet used * fix type * add FUZZY predicate * add fuzzy attribute list * fix type properly * tidying * remove unnecessary dependency * handle fuzzy sets * simplify fuzzy sets * case fix * switch to FUZZYn predicates use Levenshtein distance. remove fuzzy param. remove rapidfuzz_capi. * revert changes added for fuzzy param * switch to polyleven (Python package) * fuzzy match only on oov tokens * remove polyleven * exclude whitespace tokens * don't allow more edits than characters * fix min distance * reinstate FUZZY operator with length-based distance function * handle sets inside regex operator * remove is_oov check * attempt build fix no mypy failure locally * re-attempt build fix * don't overwrite fuzzy param value * move fuzzy_match to its own Python module to allow patching * move fuzzy_match back inside Matcher simplify logic and add tests * Format tests * Parametrize fuzzyn tests * Parametrize and merge fuzzy+set tests * Format * Move fuzzy_match to a standalone method * Change regex kwarg type to bool * Add types for fuzzy_match - Refactor variable names - Add test for symmetrical behavior * Parametrize fuzzyn+set tests * Minor refactoring for fuzz/fuzzy * Make fuzzy_match a Matcher kwarg * Update type for _default_fuzzy_match * don't overwrite function param * Rename to fuzzy_compare * Update fuzzy_compare default argument declarations * allow fuzzy_compare override from EntityRuler * define new Matcher keyword arg * fix type definition * Implement fuzzy_compare config option for EntityRuler and SpanRuler * Rename _default_fuzzy_compare to fuzzy_compare, remove from reexported objects * Use simpler fuzzy_compare algorithm * Update types * Increase minimum to 2 in fuzzy_compare to allow one transposition * Fix predicate keys and matching for SetPredicate with FUZZY and REGEX * Add FUZZY6..9 * Add initial docs * Increase default fuzzy to rounded 30% of pattern length * Update docs for fuzzy_compare in components * Update EntityRuler and SpanRuler API docs * Rename EntityRuler and SpanRuler setting to matcher_fuzzy_compare To having naming similar to `phrase_matcher_attr`, rename `fuzzy_compare` setting for `EntityRuler` and `SpanRuler` to `matcher_fuzzy_compare. Organize next to `phrase_matcher_attr` in docs. * Fix schema aliases Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Fix typo Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Add FUZZY6-9 operators and update tests * Parameterize test over greedy Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Fix type for fuzzy_compare to remove Optional * Rename to spacy.levenshtein_compare.v1, move to spacy.matcher.levenshtein * Update docs following levenshtein_compare renaming Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> |
||
---|---|---|
.github | ||
bin | ||
examples | ||
extra | ||
licenses | ||
spacy | ||
website | ||
.gitignore | ||
.pre-commit-config.yaml | ||
azure-pipelines.yml | ||
build-constraints.txt | ||
CITATION.cff | ||
CONTRIBUTING.md | ||
LICENSE | ||
Makefile | ||
MANIFEST.in | ||
netlify.toml | ||
pyproject.toml | ||
README.md | ||
requirements.txt | ||
setup.cfg | ||
setup.py |
spaCy: Industrial-strength NLP
spaCy is a library for advanced Natural Language Processing in Python and Cython. It's built on the very latest research, and was designed from day one to be used in real products.
spaCy comes with pretrained pipelines and currently supports tokenization and training for 70+ languages. It features state-of-the-art speed and neural network models for tagging, parsing, named entity recognition, text classification and more, multi-task learning with pretrained transformers like BERT, as well as a production-ready training system and easy model packaging, deployment and workflow management. spaCy is commercial open-source software, released under the MIT license.
💫 Version 3.4 out now! Check out the release notes here.
📖 Documentation
Documentation | |
---|---|
⭐️ spaCy 101 | New to spaCy? Here's everything you need to know! |
📚 Usage Guides | How to use spaCy and its features. |
🚀 New in v3.0 | New features, backwards incompatibilities and migration guide. |
🪐 Project Templates | End-to-end workflows you can clone, modify and run. |
🎛 API Reference | The detailed reference for spaCy's API. |
📦 Models | Download trained pipelines for spaCy. |
🌌 Universe | Plugins, extensions, demos and books from the spaCy ecosystem. |
👩🏫 Online Course | Learn spaCy in this free and interactive online course. |
📺 Videos | Our YouTube channel with video tutorials, talks and more. |
🛠 Changelog | Changes and version history. |
💝 Contribute | How to contribute to the spaCy project and code base. |
Get a custom spaCy pipeline, tailor-made for your NLP problem by spaCy's core developers. Streamlined, production-ready, predictable and maintainable. Start by completing our 5-minute questionnaire to tell us what you need and we'll be in touch! Learn more → | |
Bespoke advice for problem solving, strategy and analysis for applied NLP projects. Services include data strategy, code reviews, pipeline design and annotation coaching. Curious? Fill in our 5-minute questionnaire to tell us what you need and we'll be in touch! Learn more → |
💬 Where to ask questions
The spaCy project is maintained by the spaCy team. Please understand that we won't be able to provide individual support via email. We also believe that help is much more valuable if it's shared publicly, so that more people can benefit from it.
Type | Platforms |
---|---|
🚨 Bug Reports | GitHub Issue Tracker |
🎁 Feature Requests & Ideas | GitHub Discussions |
👩💻 Usage Questions | GitHub Discussions · Stack Overflow |
🗯 General Discussion | GitHub Discussions |
Features
- Support for 70+ languages
- Trained pipelines for different languages and tasks
- Multi-task learning with pretrained transformers like BERT
- Support for pretrained word vectors and embeddings
- State-of-the-art speed
- Production-ready training system
- Linguistically-motivated tokenization
- Components for named entity recognition, part-of-speech-tagging, dependency parsing, sentence segmentation, text classification, lemmatization, morphological analysis, entity linking and more
- Easily extensible with custom components and attributes
- Support for custom models in PyTorch, TensorFlow and other frameworks
- Built in visualizers for syntax and NER
- Easy model packaging, deployment and workflow management
- Robust, rigorously evaluated accuracy
📖 For more details, see the facts, figures and benchmarks.
⏳ Install spaCy
For detailed installation instructions, see the documentation.
- Operating system: macOS / OS X · Linux · Windows (Cygwin, MinGW, Visual Studio)
- Python version: Python 3.6+ (only 64 bit)
- Package managers: pip · conda (via
conda-forge
)
pip
Using pip, spaCy releases are available as source packages and binary wheels.
Before you install spaCy and its dependencies, make sure that
your pip
, setuptools
and wheel
are up to date.
pip install -U pip setuptools wheel
pip install spacy
To install additional data tables for lemmatization and normalization you can
run pip install spacy[lookups]
or install
spacy-lookups-data
separately. The lookups package is needed to create blank models with
lemmatization data, and to lemmatize in languages that don't yet come with
pretrained models and aren't powered by third-party libraries.
When using pip it is generally recommended to install packages in a virtual environment to avoid modifying system state:
python -m venv .env
source .env/bin/activate
pip install -U pip setuptools wheel
pip install spacy
conda
You can also install spaCy from conda
via the conda-forge
channel. For the
feedstock including the build recipe and configuration, check out
this repository.
conda install -c conda-forge spacy
Updating spaCy
Some updates to spaCy may require downloading new statistical models. If you're
running spaCy v2.0 or higher, you can use the validate
command to check if
your installed models are compatible and if not, print details on how to update
them:
pip install -U spacy
python -m spacy validate
If you've trained your own models, keep in mind that your training and runtime inputs must match. After updating spaCy, we recommend retraining your models with the new version.
📖 For details on upgrading from spaCy 2.x to spaCy 3.x, see the migration guide.
📦 Download model packages
Trained pipelines for spaCy can be installed as Python packages. This
means that they're a component of your application, just like any other module.
Models can be installed using spaCy's download
command, or manually by pointing pip to a path or URL.
Documentation | |
---|---|
Available Pipelines | Detailed pipeline descriptions, accuracy figures and benchmarks. |
Models Documentation | Detailed usage and installation instructions. |
Training | How to train your own pipelines on your data. |
# Download best-matching version of specific model for your spaCy installation
python -m spacy download en_core_web_sm
# pip install .tar.gz archive or .whl from path or URL
pip install /Users/you/en_core_web_sm-3.0.0.tar.gz
pip install /Users/you/en_core_web_sm-3.0.0-py3-none-any.whl
pip install https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-3.0.0/en_core_web_sm-3.0.0.tar.gz
Loading and using models
To load a model, use spacy.load()
with the model name or a path to the model data directory.
import spacy
nlp = spacy.load("en_core_web_sm")
doc = nlp("This is a sentence.")
You can also import
a model directly via its full name and then call its
load()
method with no arguments.
import spacy
import en_core_web_sm
nlp = en_core_web_sm.load()
doc = nlp("This is a sentence.")
📖 For more info and examples, check out the models documentation.
⚒ Compile from source
The other way to install spaCy is to clone its GitHub repository and build it from source. That is the common way if you want to make changes to the code base. You'll need to make sure that you have a development environment consisting of a Python distribution including header files, a compiler, pip, virtualenv and git installed. The compiler part is the trickiest. How to do that depends on your system.
Platform | |
---|---|
Ubuntu | Install system-level dependencies via apt-get : sudo apt-get install build-essential python-dev git . |
Mac | Install a recent version of XCode, including the so-called "Command Line Tools". macOS and OS X ship with Python and git preinstalled. |
Windows | Install a version of the Visual C++ Build Tools or Visual Studio Express that matches the version that was used to compile your Python interpreter. |
For more details and instructions, see the documentation on compiling spaCy from source and the quickstart widget to get the right commands for your platform and Python version.
git clone https://github.com/explosion/spaCy
cd spaCy
python -m venv .env
source .env/bin/activate
# make sure you are using the latest pip
python -m pip install -U pip setuptools wheel
pip install -r requirements.txt
pip install --no-build-isolation --editable .
To install with extras:
pip install --no-build-isolation --editable .[lookups,cuda102]
🚦 Run tests
spaCy comes with an extensive test suite. In order to run the
tests, you'll usually want to clone the repository and build spaCy from source.
This will also install the required development dependencies and test utilities
defined in the requirements.txt
.
Alternatively, you can run pytest
on the tests from within the installed
spacy
package. Don't forget to also install the test utilities via spaCy's
requirements.txt
:
pip install -r requirements.txt
python -m pytest --pyargs spacy