mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			112 lines
		
	
	
		
			3.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			112 lines
		
	
	
		
			3.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#!/usr/bin/env python
 | 
						|
# coding: utf8
 | 
						|
"""Example of training spaCy's named entity recognizer, starting off with an
 | 
						|
existing model or a blank model.
 | 
						|
 | 
						|
For more details, see the documentation:
 | 
						|
* Training: https://spacy.io/usage/training
 | 
						|
* NER: https://spacy.io/usage/linguistic-features#named-entities
 | 
						|
 | 
						|
Compatible with: spaCy v2.0.0+
 | 
						|
Last tested with: v2.1.0
 | 
						|
"""
 | 
						|
from __future__ import unicode_literals, print_function
 | 
						|
 | 
						|
import plac
 | 
						|
import random
 | 
						|
from pathlib import Path
 | 
						|
import spacy
 | 
						|
from spacy.util import minibatch, compounding
 | 
						|
 | 
						|
 | 
						|
# training data
 | 
						|
TRAIN_DATA = [
 | 
						|
    ("Who is Shaka Khan?", {"entities": [(7, 17, "PERSON")]}),
 | 
						|
    ("I like London and Berlin.", {"entities": [(7, 13, "LOC"), (18, 24, "LOC")]}),
 | 
						|
]
 | 
						|
 | 
						|
 | 
						|
@plac.annotations(
 | 
						|
    model=("Model name. Defaults to blank 'en' model.", "option", "m", str),
 | 
						|
    output_dir=("Optional output directory", "option", "o", Path),
 | 
						|
    n_iter=("Number of training iterations", "option", "n", int),
 | 
						|
)
 | 
						|
def main(model=None, output_dir=None, n_iter=100):
 | 
						|
    """Load the model, set up the pipeline and train the entity recognizer."""
 | 
						|
    if model is not None:
 | 
						|
        nlp = spacy.load(model)  # load existing spaCy model
 | 
						|
        print("Loaded model '%s'" % model)
 | 
						|
    else:
 | 
						|
        nlp = spacy.blank("en")  # create blank Language class
 | 
						|
        print("Created blank 'en' model")
 | 
						|
 | 
						|
    # create the built-in pipeline components and add them to the pipeline
 | 
						|
    # nlp.create_pipe works for built-ins that are registered with spaCy
 | 
						|
    if "ner" not in nlp.pipe_names:
 | 
						|
        ner = nlp.create_pipe("ner")
 | 
						|
        nlp.add_pipe(ner, last=True)
 | 
						|
    # otherwise, get it so we can add labels
 | 
						|
    else:
 | 
						|
        ner = nlp.get_pipe("ner")
 | 
						|
 | 
						|
    # add labels
 | 
						|
    for _, annotations in TRAIN_DATA:
 | 
						|
        for ent in annotations.get("entities"):
 | 
						|
            ner.add_label(ent[2])
 | 
						|
 | 
						|
    # get names of other pipes to disable them during training
 | 
						|
    other_pipes = [pipe for pipe in nlp.pipe_names if pipe != "ner"]
 | 
						|
    with nlp.disable_pipes(*other_pipes):  # only train NER
 | 
						|
        # reset and initialize the weights randomly – but only if we're
 | 
						|
        # training a new model
 | 
						|
        if model is None:
 | 
						|
            nlp.begin_training()
 | 
						|
        for itn in range(n_iter):
 | 
						|
            random.shuffle(TRAIN_DATA)
 | 
						|
            losses = {}
 | 
						|
            # batch up the examples using spaCy's minibatch
 | 
						|
            batches = minibatch(TRAIN_DATA, size=compounding(4.0, 32.0, 1.001))
 | 
						|
            for batch in batches:
 | 
						|
                texts, annotations = zip(*batch)
 | 
						|
                nlp.update(
 | 
						|
                    texts,  # batch of texts
 | 
						|
                    annotations,  # batch of annotations
 | 
						|
                    drop=0.5,  # dropout - make it harder to memorise data
 | 
						|
                    losses=losses,
 | 
						|
                )
 | 
						|
            print("Losses", losses)
 | 
						|
 | 
						|
    # test the trained model
 | 
						|
    for text, _ in TRAIN_DATA:
 | 
						|
        doc = nlp(text)
 | 
						|
        print("Entities", [(ent.text, ent.label_) for ent in doc.ents])
 | 
						|
        print("Tokens", [(t.text, t.ent_type_, t.ent_iob) for t in doc])
 | 
						|
 | 
						|
    # save model to output directory
 | 
						|
    if output_dir is not None:
 | 
						|
        output_dir = Path(output_dir)
 | 
						|
        if not output_dir.exists():
 | 
						|
            output_dir.mkdir()
 | 
						|
        nlp.to_disk(output_dir)
 | 
						|
        print("Saved model to", output_dir)
 | 
						|
 | 
						|
        # test the saved model
 | 
						|
        print("Loading from", output_dir)
 | 
						|
        nlp2 = spacy.load(output_dir)
 | 
						|
        for text, _ in TRAIN_DATA:
 | 
						|
            doc = nlp2(text)
 | 
						|
            print("Entities", [(ent.text, ent.label_) for ent in doc.ents])
 | 
						|
            print("Tokens", [(t.text, t.ent_type_, t.ent_iob) for t in doc])
 | 
						|
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
    plac.call(main)
 | 
						|
 | 
						|
    # Expected output:
 | 
						|
    # Entities [('Shaka Khan', 'PERSON')]
 | 
						|
    # Tokens [('Who', '', 2), ('is', '', 2), ('Shaka', 'PERSON', 3),
 | 
						|
    # ('Khan', 'PERSON', 1), ('?', '', 2)]
 | 
						|
    # Entities [('London', 'LOC'), ('Berlin', 'LOC')]
 | 
						|
    # Tokens [('I', '', 2), ('like', '', 2), ('London', 'LOC', 3),
 | 
						|
    # ('and', '', 2), ('Berlin', 'LOC', 3), ('.', '', 2)]
 |