mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			177 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			177 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# coding: utf-8
 | 
						|
from __future__ import unicode_literals
 | 
						|
 | 
						|
from ...vectors import Vectors
 | 
						|
from ...tokenizer import Tokenizer
 | 
						|
from ...strings import hash_string
 | 
						|
from ..util import add_vecs_to_vocab, get_doc
 | 
						|
 | 
						|
import numpy
 | 
						|
import pytest
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture
 | 
						|
def strings():
 | 
						|
    return ["apple", "orange"]
 | 
						|
 | 
						|
@pytest.fixture
 | 
						|
def vectors():
 | 
						|
    return [
 | 
						|
        ("apple", [1, 2, 3]),
 | 
						|
        ("orange", [-1, -2, -3]),
 | 
						|
        ('and', [-1, -1, -1]),
 | 
						|
        ('juice', [5, 5, 10]),
 | 
						|
        ('pie', [7, 6.3, 8.9])]
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture
 | 
						|
def data():
 | 
						|
    return numpy.asarray([[0.0, 1.0, 2.0], [3.0, -2.0, 4.0]], dtype='f')
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture()
 | 
						|
def vocab(en_vocab, vectors):
 | 
						|
    add_vecs_to_vocab(en_vocab, vectors)
 | 
						|
    return en_vocab
 | 
						|
 | 
						|
 | 
						|
def test_init_vectors_with_data(strings, data):
 | 
						|
    v = Vectors(data=data)
 | 
						|
    assert v.shape == data.shape
 | 
						|
 | 
						|
def test_init_vectors_with_shape(strings):
 | 
						|
    v = Vectors(shape=(len(strings), 3))
 | 
						|
    assert v.shape == (len(strings), 3)
 | 
						|
 | 
						|
 | 
						|
def test_get_vector(strings, data):
 | 
						|
    v = Vectors(data=data)
 | 
						|
    strings = [hash_string(s) for s in strings]
 | 
						|
    for i, string in enumerate(strings):
 | 
						|
        v.add(string, row=i)
 | 
						|
    assert list(v[strings[0]]) == list(data[0])
 | 
						|
    assert list(v[strings[0]]) != list(data[1])
 | 
						|
    assert list(v[strings[1]]) != list(data[0])
 | 
						|
 | 
						|
 | 
						|
def test_set_vector(strings, data):
 | 
						|
    orig = data.copy()
 | 
						|
    v = Vectors(data=data)
 | 
						|
    strings = [hash_string(s) for s in strings]
 | 
						|
    for i, string in enumerate(strings):
 | 
						|
        v.add(string, row=i)
 | 
						|
    assert list(v[strings[0]]) == list(orig[0])
 | 
						|
    assert list(v[strings[0]]) != list(orig[1])
 | 
						|
    v[strings[0]] = data[1]
 | 
						|
    assert list(v[strings[0]]) == list(orig[1])
 | 
						|
    assert list(v[strings[0]]) != list(orig[0])
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture()
 | 
						|
def tokenizer_v(vocab):
 | 
						|
    return Tokenizer(vocab, {}, None, None, None)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize('text', ["apple and orange"])
 | 
						|
def test_vectors_token_vector(tokenizer_v, vectors, text):
 | 
						|
    doc = tokenizer_v(text)
 | 
						|
    assert vectors[0] == (doc[0].text, list(doc[0].vector))
 | 
						|
    assert vectors[1] == (doc[2].text, list(doc[2].vector))
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize('text', ["apple", "orange"])
 | 
						|
def test_vectors_lexeme_vector(vocab, text):
 | 
						|
    lex = vocab[text]
 | 
						|
    assert list(lex.vector)
 | 
						|
    assert lex.vector_norm
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize('text', [["apple", "and", "orange"]])
 | 
						|
def test_vectors_doc_vector(vocab, text):
 | 
						|
    doc = get_doc(vocab, text)
 | 
						|
    assert list(doc.vector)
 | 
						|
    assert doc.vector_norm
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize('text', [["apple", "and", "orange"]])
 | 
						|
def test_vectors_span_vector(vocab, text):
 | 
						|
    span = get_doc(vocab, text)[0:2]
 | 
						|
    assert list(span.vector)
 | 
						|
    assert span.vector_norm
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize('text', ["apple orange"])
 | 
						|
def test_vectors_token_token_similarity(tokenizer_v, text):
 | 
						|
    doc = tokenizer_v(text)
 | 
						|
    assert doc[0].similarity(doc[1]) == doc[1].similarity(doc[0])
 | 
						|
    assert -1. < doc[0].similarity(doc[1]) < 1.0
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize('text1,text2', [("apple", "orange")])
 | 
						|
def test_vectors_token_lexeme_similarity(tokenizer_v, vocab, text1, text2):
 | 
						|
    token = tokenizer_v(text1)
 | 
						|
    lex = vocab[text2]
 | 
						|
    assert token.similarity(lex) == lex.similarity(token)
 | 
						|
    assert -1. < token.similarity(lex) < 1.0
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize('text', [["apple", "orange", "juice"]])
 | 
						|
def test_vectors_token_span_similarity(vocab, text):
 | 
						|
    doc = get_doc(vocab, text)
 | 
						|
    assert doc[0].similarity(doc[1:3]) == doc[1:3].similarity(doc[0])
 | 
						|
    assert -1. < doc[0].similarity(doc[1:3]) < 1.0
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize('text', [["apple", "orange", "juice"]])
 | 
						|
def test_vectors_token_doc_similarity(vocab, text):
 | 
						|
    doc = get_doc(vocab, text)
 | 
						|
    assert doc[0].similarity(doc) == doc.similarity(doc[0])
 | 
						|
    assert -1. < doc[0].similarity(doc) < 1.0
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize('text', [["apple", "orange", "juice"]])
 | 
						|
def test_vectors_lexeme_span_similarity(vocab, text):
 | 
						|
    doc = get_doc(vocab, text)
 | 
						|
    lex = vocab[text[0]]
 | 
						|
    assert lex.similarity(doc[1:3]) == doc[1:3].similarity(lex)
 | 
						|
    assert -1. < doc.similarity(doc[1:3]) < 1.0
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize('text1,text2', [("apple", "orange")])
 | 
						|
def test_vectors_lexeme_lexeme_similarity(vocab, text1, text2):
 | 
						|
    lex1 = vocab[text1]
 | 
						|
    lex2 = vocab[text2]
 | 
						|
    assert lex1.similarity(lex2) == lex2.similarity(lex1)
 | 
						|
    assert -1. < lex1.similarity(lex2) < 1.0
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize('text', [["apple", "orange", "juice"]])
 | 
						|
def test_vectors_lexeme_doc_similarity(vocab, text):
 | 
						|
    doc = get_doc(vocab, text)
 | 
						|
    lex = vocab[text[0]]
 | 
						|
    assert lex.similarity(doc) == doc.similarity(lex)
 | 
						|
    assert -1. < lex.similarity(doc) < 1.0
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize('text', [["apple", "orange", "juice"]])
 | 
						|
def test_vectors_span_span_similarity(vocab, text):
 | 
						|
    doc = get_doc(vocab, text)
 | 
						|
    assert doc[0:2].similarity(doc[1:3]) == doc[1:3].similarity(doc[0:2])
 | 
						|
    assert -1. < doc[0:2].similarity(doc[1:3]) < 1.0
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize('text', [["apple", "orange", "juice"]])
 | 
						|
def test_vectors_span_doc_similarity(vocab, text):
 | 
						|
    doc = get_doc(vocab, text)
 | 
						|
    assert doc[0:2].similarity(doc) == doc.similarity(doc[0:2])
 | 
						|
    assert -1. < doc[0:2].similarity(doc) < 1.0
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize('text1,text2', [
 | 
						|
    (["apple", "and", "apple", "pie"], ["orange", "juice"])])
 | 
						|
def test_vectors_doc_doc_similarity(vocab, text1, text2):
 | 
						|
    doc1 = get_doc(vocab, text1)
 | 
						|
    doc2 = get_doc(vocab, text2)
 | 
						|
    assert doc1.similarity(doc2) == doc2.similarity(doc1)
 | 
						|
    assert -1. < doc1.similarity(doc2) < 1.0
 |