mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			31 lines
		
	
	
		
			1.2 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			31 lines
		
	
	
		
			1.2 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
//- 💫 DOCS > USAGE > VECTORS & SIMILARITY > GPU
 | 
						|
 | 
						|
p
 | 
						|
    |  If you're using a GPU, it's much more efficient to keep the word vectors
 | 
						|
    |  on the device. You can do that by setting the
 | 
						|
    |  #[+api("vectors#attributes") #[code Vectors.data]] attribute to a
 | 
						|
    |  #[code cupy.ndarray] object if you're using spaCy
 | 
						|
    |  or #[+a("https://chainer.org") Chainer], or a
 | 
						|
    |  #[code torch.Tensor] object if you're using
 | 
						|
    |  #[+a("http://pytorch.org") PyTorch]. The #[code data] object just needs
 | 
						|
    |  to support #[code __iter__] and #[code __getitem__], so if you're using
 | 
						|
    |  another library such as #[+a("https://www.tensorflow.org") TensorFlow],
 | 
						|
    |  you could also create a wrapper for your vectors data.
 | 
						|
 | 
						|
+code("spaCy, Thinc or Chainer").
 | 
						|
    import cupy.cuda
 | 
						|
    from spacy.vectors import Vectors
 | 
						|
 | 
						|
    vector_table = numpy.zeros((3, 300), dtype='f')
 | 
						|
    vectors = Vectors([u'dog', u'cat', u'orange'], vector_table)
 | 
						|
    with cupy.cuda.Device(0):
 | 
						|
        vectors.data = cupy.asarray(vectors.data)
 | 
						|
 | 
						|
+code("PyTorch").
 | 
						|
    import torch
 | 
						|
    from spacy.vectors import Vectors
 | 
						|
 | 
						|
    vector_table = numpy.zeros((3, 300), dtype='f')
 | 
						|
    vectors = Vectors([u'dog', u'cat', u'orange'], vector_table)
 | 
						|
    vectors.data = torch.Tensor(vectors.data).cuda(0)
 |