mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-30 23:47:31 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			70 lines
		
	
	
		
			2.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			70 lines
		
	
	
		
			2.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from __future__ import unicode_literals, print_function
 | |
| 
 | |
| import random
 | |
| 
 | |
| from spacy.lang.en import English
 | |
| from spacy.gold import GoldParse, biluo_tags_from_offsets
 | |
| 
 | |
| 
 | |
| def reformat_train_data(tokenizer, examples):
 | |
|     """Reformat data to match JSON format"""
 | |
|     output = []
 | |
|     for i, (text, entity_offsets) in enumerate(examples):
 | |
|         doc = tokenizer(text)
 | |
|         ner_tags = biluo_tags_from_offsets(tokenizer(text), entity_offsets)
 | |
|         words = [w.text for w in doc]
 | |
|         tags = ['-'] * len(doc)
 | |
|         heads = [0] * len(doc)
 | |
|         deps = [''] * len(doc)
 | |
|         sentence = (range(len(doc)), words, tags, heads, deps, ner_tags)
 | |
|         output.append((text, [(sentence, [])]))
 | |
|     return output
 | |
| 
 | |
| 
 | |
| def main(model_dir=None):
 | |
|     train_data = [
 | |
|         (
 | |
|             'Who is Shaka Khan?',
 | |
|             [(len('Who is '), len('Who is Shaka Khan'), 'PERSON')]
 | |
|         ),
 | |
|         (
 | |
|             'I like London and Berlin.',
 | |
|             [(len('I like '), len('I like London'), 'LOC'),
 | |
|             (len('I like London and '), len('I like London and Berlin'), 'LOC')]
 | |
|         )
 | |
|     ]
 | |
|     nlp = English(pipeline=['tensorizer', 'ner'])
 | |
|     get_data = lambda: reformat_train_data(nlp.tokenizer, train_data)
 | |
|     optimizer = nlp.begin_training(get_data)
 | |
|     for itn in range(100):
 | |
|         random.shuffle(train_data)
 | |
|         losses = {}
 | |
|         for raw_text, entity_offsets in train_data:
 | |
|             doc = nlp.make_doc(raw_text)
 | |
|             gold = GoldParse(doc, entities=entity_offsets)
 | |
|             nlp.update(
 | |
|                 [doc], # Batch of Doc objects
 | |
|                 [gold], # Batch of GoldParse objects
 | |
|                 drop=0.5, # Dropout -- make it harder to memorise data
 | |
|                 sgd=optimizer, # Callable to update weights
 | |
|                 losses=losses)
 | |
|         print(losses)
 | |
|     print("Save to", model_dir)
 | |
|     nlp.to_disk(model_dir)
 | |
|     print("Load from", model_dir)
 | |
|     nlp = spacy.lang.en.English(pipeline=['tensorizer', 'ner'])
 | |
|     nlp.from_disk(model_dir)
 | |
|     for raw_text, _ in train_data:
 | |
|         doc = nlp(raw_text)
 | |
|         for word in doc:
 | |
|             print(word.text, word.ent_type_, word.ent_iob_)
 | |
| 
 | |
| if __name__ == '__main__':
 | |
|     import plac
 | |
|     plac.call(main)
 | |
|     # Who "" 2
 | |
|     # is "" 2
 | |
|     # Shaka "" PERSON 3
 | |
|     # Khan "" PERSON 1
 | |
|     # ? "" 2
 |