mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	* return first sentence when span contains sentence boundary * docs fix * small fixes * cleanup
		
			
				
	
	
		
			67 lines
		
	
	
		
			1.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			67 lines
		
	
	
		
			1.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from spacy.lang.en import English
 | 
						|
from spacy.training import Example
 | 
						|
from spacy.util import load_config_from_str
 | 
						|
 | 
						|
 | 
						|
CONFIG = """
 | 
						|
[nlp]
 | 
						|
lang = "en"
 | 
						|
pipeline = ["tok2vec", "tagger"]
 | 
						|
 | 
						|
[components]
 | 
						|
 | 
						|
[components.tok2vec]
 | 
						|
factory = "tok2vec"
 | 
						|
 | 
						|
[components.tok2vec.model]
 | 
						|
@architectures = "spacy.Tok2Vec.v1"
 | 
						|
 | 
						|
[components.tok2vec.model.embed]
 | 
						|
@architectures = "spacy.MultiHashEmbed.v1"
 | 
						|
width = ${components.tok2vec.model.encode:width}
 | 
						|
attrs = ["NORM","PREFIX","SUFFIX","SHAPE"]
 | 
						|
rows = [5000,2500,2500,2500]
 | 
						|
include_static_vectors = false
 | 
						|
 | 
						|
[components.tok2vec.model.encode]
 | 
						|
@architectures = "spacy.MaxoutWindowEncoder.v1"
 | 
						|
width = 96
 | 
						|
depth = 4
 | 
						|
window_size = 1
 | 
						|
maxout_pieces = 3
 | 
						|
 | 
						|
[components.tagger]
 | 
						|
factory = "tagger"
 | 
						|
 | 
						|
[components.tagger.model]
 | 
						|
@architectures = "spacy.Tagger.v1"
 | 
						|
nO = null
 | 
						|
 | 
						|
[components.tagger.model.tok2vec]
 | 
						|
@architectures = "spacy.Tok2VecListener.v1"
 | 
						|
width = ${components.tok2vec.model.encode:width}
 | 
						|
upstream = "*"
 | 
						|
"""
 | 
						|
 | 
						|
 | 
						|
TRAIN_DATA = [
 | 
						|
    ("I like green eggs", {"tags": ["N", "V", "J", "N"]}),
 | 
						|
    ("Eat blue ham", {"tags": ["V", "J", "N"]}),
 | 
						|
]
 | 
						|
 | 
						|
 | 
						|
def test_issue7029():
 | 
						|
    """Test that an empty document doesn't mess up an entire batch."""
 | 
						|
    nlp = English.from_config(load_config_from_str(CONFIG))
 | 
						|
    train_examples = []
 | 
						|
    for t in TRAIN_DATA:
 | 
						|
        train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
 | 
						|
    optimizer = nlp.initialize(get_examples=lambda: train_examples)
 | 
						|
    for i in range(50):
 | 
						|
        losses = {}
 | 
						|
        nlp.update(train_examples, sgd=optimizer, losses=losses)
 | 
						|
    texts = ["first", "second", "third", "fourth", "and", "then", "some", ""]
 | 
						|
    docs1 = list(nlp.pipe(texts, batch_size=1))
 | 
						|
    docs2 = list(nlp.pipe(texts, batch_size=4))
 | 
						|
    assert [doc[0].tag_ for doc in docs1[:-1]] == [doc[0].tag_ for doc in docs2[:-1]]
 |