spaCy/spacy/ml/tb_framework.pyx
Sofie Van Landeghem f293386d3e
remove unnecessary line
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
2023-07-20 14:08:29 +02:00

642 lines
23 KiB
Cython

# cython: infer_types=True, cdivision=True, boundscheck=False
from typing import Any, List, Optional, Tuple, cast
from libc.stdlib cimport calloc, free, realloc
from libc.string cimport memcpy, memset
from libcpp.vector cimport vector
import numpy
cimport numpy as np
from thinc.api import (
Linear,
Model,
NumpyOps,
chain,
glorot_uniform_init,
list2array,
normal_init,
uniform_init,
zero_init,
)
from thinc.backends.cblas cimport CBlas, saxpy, sgemm
from thinc.types import Floats2d, Floats3d, Floats4d, Ints1d, Ints2d
from ..errors import Errors
from ..pipeline._parser_internals import _beam_utils
from ..pipeline._parser_internals.batch import GreedyBatch
from ..pipeline._parser_internals._parser_utils cimport arg_max
from ..pipeline._parser_internals.stateclass cimport StateC, StateClass
from ..pipeline._parser_internals.transition_system cimport (
TransitionSystem,
c_apply_actions,
c_transition_batch,
)
from ..tokens.doc import Doc
from ..util import registry
State = Any # TODO
@registry.layers("spacy.TransitionModel.v2")
def TransitionModel(
*,
tok2vec: Model[List[Doc], List[Floats2d]],
beam_width: int = 1,
beam_density: float = 0.0,
state_tokens: int,
hidden_width: int,
maxout_pieces: int,
nO: Optional[int] = None,
unseen_classes=set(),
) -> Model[Tuple[List[Doc], TransitionSystem], List[Tuple[State, List[Floats2d]]]]:
"""Set up a transition-based parsing model, using a maxout hidden
layer and a linear output layer.
"""
t2v_width = tok2vec.get_dim("nO") if tok2vec.has_dim("nO") else None
tok2vec_projected = chain(tok2vec, list2array(), Linear(hidden_width, t2v_width)) # type: ignore
tok2vec_projected.set_dim("nO", hidden_width)
# FIXME: we use `output` as a container for the output layer's
# weights and biases. Thinc optimizers cannot handle resizing
# of parameters. So, when the parser model is resized, we
# construct a new `output` layer, which has a different key in
# the optimizer. Once the optimizer supports parameter resizing,
# we can replace the `output` layer by `output_W` and `output_b`
# parameters in this model.
output = Linear(nO=None, nI=hidden_width, init_W=zero_init)
return Model(
name="parser_model",
forward=forward,
init=init,
layers=[tok2vec_projected, output],
refs={
"tok2vec": tok2vec_projected,
"output": output,
},
params={
"hidden_W": None, # Floats2d W for the hidden layer
"hidden_b": None, # Floats1d bias for the hidden layer
"hidden_pad": None, # Floats1d padding for the hidden layer
},
dims={
"nO": None, # Output size
"nP": maxout_pieces,
"nH": hidden_width,
"nI": tok2vec_projected.maybe_get_dim("nO"),
"nF": state_tokens,
},
attrs={
"beam_width": beam_width,
"beam_density": beam_density,
"unseen_classes": set(unseen_classes),
"resize_output": resize_output,
},
)
def resize_output(model: Model, new_nO: int) -> Model:
old_nO = model.maybe_get_dim("nO")
output = model.get_ref("output")
if old_nO is None:
model.set_dim("nO", new_nO)
output.set_dim("nO", new_nO)
output.initialize()
return model
elif new_nO <= old_nO:
return model
elif output.has_param("W"):
nH = model.get_dim("nH")
new_output = Linear(nO=new_nO, nI=nH, init_W=zero_init)
new_output.initialize()
new_W = new_output.get_param("W")
new_b = new_output.get_param("b")
old_W = output.get_param("W")
old_b = output.get_param("b")
new_W[:old_nO] = old_W # type: ignore
new_b[:old_nO] = old_b # type: ignore
for i in range(old_nO, new_nO):
model.attrs["unseen_classes"].add(i)
model.layers[-1] = new_output
model.set_ref("output", new_output)
# TODO: Avoid this private intrusion
model._dims["nO"] = new_nO
return model
def init(
model,
X: Optional[Tuple[List[Doc], TransitionSystem]] = None,
Y: Optional[Tuple[List[State], List[Floats2d]]] = None,
):
if X is not None:
docs, _ = X
model.get_ref("tok2vec").initialize(X=docs)
else:
model.get_ref("tok2vec").initialize()
inferred_nO = _infer_nO(Y)
if inferred_nO is not None:
current_nO = model.maybe_get_dim("nO")
if current_nO is None or current_nO != inferred_nO:
model.attrs["resize_output"](model, inferred_nO)
nP = model.get_dim("nP")
nH = model.get_dim("nH")
nI = model.get_dim("nI")
nF = model.get_dim("nF")
ops = model.ops
Wl = ops.alloc2f(nH * nP, nF * nI)
bl = ops.alloc1f(nH * nP)
padl = ops.alloc1f(nI)
# Wl = zero_init(ops, Wl.shape)
Wl = glorot_uniform_init(ops, Wl.shape)
padl = uniform_init(ops, padl.shape) # type: ignore
# TODO: Experiment with whether better to initialize output_W
model.set_param("hidden_W", Wl)
model.set_param("hidden_b", bl)
model.set_param("hidden_pad", padl)
# model = _lsuv_init(model)
return model
class TransitionModelInputs:
"""
Input to transition model.
"""
# dataclass annotation is not yet supported in Cython 0.29.x,
# so, we'll do something close to it.
actions: Optional[List[Ints1d]]
docs: List[Doc]
max_moves: int
moves: TransitionSystem
states: Optional[List[State]]
__slots__ = [
"actions",
"docs",
"max_moves",
"moves",
"states",
]
def __init__(
self,
docs: List[Doc],
moves: TransitionSystem,
actions: Optional[List[Ints1d]] = None,
max_moves: int = 0,
states: Optional[List[State]] = None,
):
"""
actions (Optional[List[Ints1d]]): actions to apply for each Doc.
docs (List[Doc]): Docs to predict transition sequences for.
max_moves: (int): the maximum number of moves to apply, values less
than 1 will apply moves to states until they are final states.
moves (TransitionSystem): the transition system to use when predicting
the transition sequences.
states (Optional[List[States]]): the initial states to predict the
transition sequences for. When absent, the initial states are
initialized from the provided Docs.
"""
self.actions = actions
self.docs = docs
self.moves = moves
self.max_moves = max_moves
self.states = states
def forward(model, inputs: TransitionModelInputs, is_train: bool):
docs = inputs.docs
moves = inputs.moves
actions = inputs.actions
beam_width = model.attrs["beam_width"]
hidden_pad = model.get_param("hidden_pad")
tok2vec = model.get_ref("tok2vec")
states = moves.init_batch(docs) if inputs.states is None else inputs.states
tokvecs, backprop_tok2vec = tok2vec(docs, is_train)
tokvecs = model.ops.xp.vstack((tokvecs, hidden_pad))
feats, backprop_feats = _forward_precomputable_affine(model, tokvecs, is_train)
seen_mask = _get_seen_mask(model)
if not is_train and beam_width == 1 and isinstance(model.ops, NumpyOps):
# Note: max_moves is only used during training, so we don't need to
# pass it to the greedy inference path.
return _forward_greedy_cpu(model, moves, states, feats, seen_mask, actions=actions)
else:
return _forward_fallback(model, moves, states, tokvecs, backprop_tok2vec,
feats, backprop_feats, seen_mask, is_train, actions=actions,
max_moves=inputs.max_moves)
def _forward_greedy_cpu(model: Model, TransitionSystem moves, states: List[StateClass], np.ndarray feats,
np.ndarray[np.npy_bool, ndim = 1] seen_mask, actions: Optional[List[Ints1d]] = None):
cdef vector[StateC*] c_states
cdef StateClass state
for state in states:
if not state.is_final():
c_states.push_back(state.c)
weights = _get_c_weights(model, <float*>feats.data, seen_mask)
# Precomputed features have rows for each token, plus one for padding.
cdef int n_tokens = feats.shape[0] - 1
sizes = _get_c_sizes(model, c_states.size(), n_tokens)
cdef CBlas cblas = model.ops.cblas()
scores = _parse_batch(cblas, moves, &c_states[0], weights, sizes, actions=actions)
def backprop(dY):
raise ValueError(Errors.E4004)
return (states, scores), backprop
cdef list _parse_batch(CBlas cblas, TransitionSystem moves, StateC** states,
WeightsC weights, SizesC sizes, actions: Optional[List[Ints1d]]=None):
cdef int i
cdef vector[StateC *] unfinished
cdef ActivationsC activations = _alloc_activations(sizes)
cdef np.ndarray step_scores
cdef np.ndarray step_actions
scores = []
while sizes.states >= 1 and (actions is None or len(actions) > 0):
step_scores = numpy.empty((sizes.states, sizes.classes), dtype="f")
step_actions = actions[0] if actions is not None else None
assert step_actions is None or step_actions.size == sizes.states, \
f"number of step actions ({step_actions.size}) must equal number of states ({sizes.states})"
with nogil:
_predict_states(cblas, &activations, <float*>step_scores.data, states, &weights, sizes)
if actions is None:
# Validate actions, argmax, take action.
c_transition_batch(moves, states, <const float*>step_scores.data, sizes.classes,
sizes.states)
else:
c_apply_actions(moves, states, <const int*>step_actions.data, sizes.states)
for i in range(sizes.states):
if not states[i].is_final():
unfinished.push_back(states[i])
for i in range(unfinished.size()):
states[i] = unfinished[i]
sizes.states = unfinished.size()
scores.append(step_scores)
unfinished.clear()
actions = actions[1:] if actions is not None else None
_free_activations(&activations)
return scores
def _forward_fallback(
model: Model,
moves: TransitionSystem,
states: List[StateClass],
tokvecs, backprop_tok2vec,
feats,
backprop_feats,
seen_mask,
is_train: bool,
actions: Optional[List[Ints1d]] = None,
max_moves: int = 0,
):
nF = model.get_dim("nF")
output = model.get_ref("output")
hidden_b = model.get_param("hidden_b")
nH = model.get_dim("nH")
nP = model.get_dim("nP")
beam_width = model.attrs["beam_width"]
beam_density = model.attrs["beam_density"]
ops = model.ops
all_ids = []
all_which = []
all_statevecs = []
all_scores = []
if beam_width == 1:
batch = GreedyBatch(moves, states, None)
else:
batch = _beam_utils.BeamBatch(
moves, states, None, width=beam_width, density=beam_density
)
arange = ops.xp.arange(nF)
n_moves = 0
while not batch.is_done:
ids = numpy.zeros((len(batch.get_unfinished_states()), nF), dtype="i")
for i, state in enumerate(batch.get_unfinished_states()):
state.set_context_tokens(ids, i, nF)
# Sum the state features, add the bias and apply the activation (maxout)
# to create the state vectors.
preacts2f = feats[ids, arange].sum(axis=1) # type: ignore
preacts2f += hidden_b
preacts = ops.reshape3f(preacts2f, preacts2f.shape[0], nH, nP)
assert preacts.shape[0] == len(batch.get_unfinished_states()), preacts.shape
statevecs, which = ops.maxout(preacts)
# We don't use output's backprop, since we want to backprop for
# all states at once, rather than a single state.
scores = output.predict(statevecs)
scores[:, seen_mask] = ops.xp.nanmin(scores)
# Transition the states, filtering out any that are finished.
cpu_scores = ops.to_numpy(scores)
if actions is None:
batch.advance(cpu_scores)
else:
batch.advance_with_actions(actions[0])
actions = actions[1:]
all_scores.append(scores)
if is_train:
# Remember intermediate results for the backprop.
all_ids.append(ids)
all_statevecs.append(statevecs)
all_which.append(which)
if n_moves >= max_moves >= 1:
break
n_moves += 1
def backprop_parser(d_states_d_scores):
ids = ops.xp.vstack(all_ids)
which = ops.xp.vstack(all_which)
statevecs = ops.xp.vstack(all_statevecs)
_, d_scores = d_states_d_scores
if model.attrs.get("unseen_classes"):
# If we have a negative gradient (i.e. the probability should
# increase) on any classes we filtered out as unseen, mark
# them as seen.
for clas in set(model.attrs["unseen_classes"]):
if (d_scores[:, clas] < 0).any():
model.attrs["unseen_classes"].remove(clas)
d_scores *= seen_mask == False # no-cython-lint
# Calculate the gradients for the parameters of the output layer.
# The weight gemm is (nS, nO) @ (nS, nH).T
output.inc_grad("b", d_scores.sum(axis=0))
output.inc_grad("W", ops.gemm(d_scores, statevecs, trans1=True))
# Now calculate d_statevecs, by backproping through the output linear layer.
# This gemm is (nS, nO) @ (nO, nH)
output_W = output.get_param("W")
d_statevecs = ops.gemm(d_scores, output_W)
# Backprop through the maxout activation
d_preacts = ops.backprop_maxout(d_statevecs, which, nP)
d_preacts2f = ops.reshape2f(d_preacts, d_preacts.shape[0], nH * nP)
model.inc_grad("hidden_b", d_preacts2f.sum(axis=0))
# We don't need to backprop the summation, because we pass back the IDs instead
d_state_features = backprop_feats((d_preacts2f, ids))
d_tokvecs = ops.alloc2f(tokvecs.shape[0], tokvecs.shape[1])
ops.scatter_add(d_tokvecs, ids, d_state_features)
model.inc_grad("hidden_pad", d_tokvecs[-1])
return (backprop_tok2vec(d_tokvecs[:-1]), None)
return (list(batch), all_scores), backprop_parser
def _get_seen_mask(model: Model) -> numpy.array[bool, 1]:
mask = model.ops.xp.zeros(model.get_dim("nO"), dtype="bool")
for class_ in model.attrs.get("unseen_classes", set()):
mask[class_] = True
return mask
def _forward_precomputable_affine(model, X: Floats2d, is_train: bool):
W: Floats2d = model.get_param("hidden_W")
nF = model.get_dim("nF")
nH = model.get_dim("nH")
nP = model.get_dim("nP")
nI = model.get_dim("nI")
# The weights start out (nH * nP, nF * nI). Transpose and reshape to (nF * nH *nP, nI)
W3f = model.ops.reshape3f(W, nH * nP, nF, nI)
W3f = W3f.transpose((1, 0, 2))
W2f = model.ops.reshape2f(W3f, nF * nH * nP, nI)
assert X.shape == (X.shape[0], nI), X.shape
Yf_ = model.ops.gemm(X, W2f, trans2=True)
Yf = model.ops.reshape3f(Yf_, Yf_.shape[0], nF, nH * nP)
def backward(dY_ids: Tuple[Floats3d, Ints2d]):
# This backprop is particularly tricky, because we get back a different
# thing from what we put out. We put out an array of shape:
# (nB, nF, nH, nP), and get back:
# (nB, nH, nP) and ids (nB, nF)
# The ids tell us the values of nF, so we would have:
#
# dYf = zeros((nB, nF, nH, nP))
# for b in range(nB):
# for f in range(nF):
# dYf[b, ids[b, f]] += dY[b]
#
# However, we avoid building that array for efficiency -- and just pass
# in the indices.
dY, ids = dY_ids
dXf = model.ops.gemm(dY, W)
Xf = X[ids].reshape((ids.shape[0], -1))
dW = model.ops.gemm(dY, Xf, trans1=True)
model.inc_grad("hidden_W", dW)
return model.ops.reshape3f(dXf, dXf.shape[0], nF, nI)
return Yf, backward
def _infer_nO(Y: Optional[Tuple[List[State], List[Floats2d]]]) -> Optional[int]:
if Y is None:
return None
_, scores = Y
if len(scores) == 0:
return None
assert scores[0].shape[0] >= 1
assert len(scores[0].shape) == 2
return scores[0].shape[1]
def _lsuv_init(model: Model):
"""This is like the 'layer sequential unit variance', but instead
of taking the actual inputs, we randomly generate whitened data.
Why's this all so complicated? We have a huge number of inputs,
and the maxout unit makes guessing the dynamics tricky. Instead
we set the maxout weights to values that empirically result in
whitened outputs given whitened inputs.
"""
W = model.maybe_get_param("hidden_W")
if W is not None and W.any():
return
nF = model.get_dim("nF")
nH = model.get_dim("nH")
nP = model.get_dim("nP")
nI = model.get_dim("nI")
W = model.ops.alloc4f(nF, nH, nP, nI)
b = model.ops.alloc2f(nH, nP)
pad = model.ops.alloc4f(1, nF, nH, nP)
ops = model.ops
W = normal_init(ops, W.shape, mean=float(ops.xp.sqrt(1.0 / nF * nI)))
pad = normal_init(ops, pad.shape, mean=1.0)
model.set_param("W", W)
model.set_param("b", b)
model.set_param("pad", pad)
ids = ops.alloc_f((5000, nF), dtype="f")
ids += ops.xp.random.uniform(0, 1000, ids.shape)
ids = ops.asarray(ids, dtype="i")
tokvecs = ops.alloc_f((5000, nI), dtype="f")
tokvecs += ops.xp.random.normal(loc=0.0, scale=1.0, size=tokvecs.size).reshape(
tokvecs.shape
)
def predict(ids, tokvecs):
# nS ids. nW tokvecs. Exclude the padding array.
hiddens, _ = _forward_precomputable_affine(model, tokvecs[:-1], False)
vectors = model.ops.alloc2f(ids.shape[0], nH * nP)
# need nS vectors
hiddens = hiddens.reshape((hiddens.shape[0] * nF, nH * nP))
model.ops.scatter_add(vectors, ids.flatten(), hiddens)
vectors3f = model.ops.reshape3f(vectors, vectors.shape[0], nH, nP)
vectors3f += b
return model.ops.maxout(vectors3f)[0]
tol_var = 0.01
tol_mean = 0.01
t_max = 10
W = cast(Floats4d, model.get_param("hidden_W").copy())
b = cast(Floats2d, model.get_param("hidden_b").copy())
for t_i in range(t_max):
acts1 = predict(ids, tokvecs)
var = model.ops.xp.var(acts1)
mean = model.ops.xp.mean(acts1)
if abs(var - 1.0) >= tol_var:
W /= model.ops.xp.sqrt(var)
model.set_param("hidden_W", W)
elif abs(mean) >= tol_mean:
b -= mean
model.set_param("hidden_b", b)
else:
break
return model
cdef WeightsC _get_c_weights(model, const float* feats, np.ndarray[np.npy_bool, ndim=1] seen_mask) except *:
output = model.get_ref("output")
cdef np.ndarray hidden_b = model.get_param("hidden_b")
cdef np.ndarray output_W = output.get_param("W")
cdef np.ndarray output_b = output.get_param("b")
cdef WeightsC weights
weights.feat_weights = feats
weights.feat_bias = <const float*>hidden_b.data
weights.hidden_weights = <const float *> output_W.data
weights.hidden_bias = <const float *> output_b.data
weights.seen_mask = <const int8_t*> seen_mask.data
return weights
cdef SizesC _get_c_sizes(model, int batch_size, int tokens) except *:
cdef SizesC sizes
sizes.states = batch_size
sizes.classes = model.get_dim("nO")
sizes.hiddens = model.get_dim("nH")
sizes.pieces = model.get_dim("nP")
sizes.feats = model.get_dim("nF")
sizes.embed_width = model.get_dim("nI")
sizes.tokens = tokens
return sizes
cdef ActivationsC _alloc_activations(SizesC n) nogil:
cdef ActivationsC A
memset(&A, 0, sizeof(A))
_resize_activations(&A, n)
return A
cdef void _free_activations(const ActivationsC* A) nogil:
free(A.token_ids)
free(A.unmaxed)
free(A.hiddens)
free(A.is_valid)
cdef void _resize_activations(ActivationsC* A, SizesC n) nogil:
if n.states <= A._max_size:
A._curr_size = n.states
return
if A._max_size == 0:
A.token_ids = <int*>calloc(n.states * n.feats, sizeof(A.token_ids[0]))
A.unmaxed = <float*>calloc(n.states * n.hiddens * n.pieces, sizeof(A.unmaxed[0]))
A.hiddens = <float*>calloc(n.states * n.hiddens, sizeof(A.hiddens[0]))
A.is_valid = <int*>calloc(n.states * n.classes, sizeof(A.is_valid[0]))
A._max_size = n.states
else:
A.token_ids = <int*>realloc(A.token_ids,
n.states * n.feats * sizeof(A.token_ids[0]))
A.unmaxed = <float*>realloc(A.unmaxed,
n.states * n.hiddens * n.pieces * sizeof(A.unmaxed[0]))
A.hiddens = <float*>realloc(A.hiddens,
n.states * n.hiddens * sizeof(A.hiddens[0]))
A.is_valid = <int*>realloc(A.is_valid,
n.states * n.classes * sizeof(A.is_valid[0]))
A._max_size = n.states
A._curr_size = n.states
cdef void _predict_states(CBlas cblas, ActivationsC* A, float* scores, StateC** states, const WeightsC* W, SizesC n) nogil:
_resize_activations(A, n)
for i in range(n.states):
states[i].set_context_tokens(&A.token_ids[i*n.feats], n.feats)
memset(A.unmaxed, 0, n.states * n.hiddens * n.pieces * sizeof(float))
_sum_state_features(cblas, A.unmaxed, W.feat_weights, A.token_ids, n)
for i in range(n.states):
saxpy(cblas)(n.hiddens * n.pieces, 1., W.feat_bias, 1, &A.unmaxed[i*n.hiddens*n.pieces], 1)
for j in range(n.hiddens):
index = i * n.hiddens * n.pieces + j * n.pieces
which = arg_max(&A.unmaxed[index], n.pieces)
A.hiddens[i*n.hiddens + j] = A.unmaxed[index + which]
if W.hidden_weights == NULL:
memcpy(scores, A.hiddens, n.states * n.classes * sizeof(float))
else:
# Compute hidden-to-output
sgemm(cblas)(False, True, n.states, n.classes, n.hiddens,
1.0, <const float *>A.hiddens, n.hiddens,
<const float *>W.hidden_weights, n.hiddens,
0.0, scores, n.classes)
# Add bias
for i in range(n.states):
saxpy(cblas)(n.classes, 1., W.hidden_bias, 1, &scores[i*n.classes], 1)
# Set unseen classes to minimum value
i = 0
min_ = scores[0]
for i in range(1, n.states * n.classes):
if scores[i] < min_:
min_ = scores[i]
for i in range(n.states):
for j in range(n.classes):
if W.seen_mask[j]:
scores[i*n.classes+j] = min_
cdef void _sum_state_features(CBlas cblas, float* output, const float* cached,
const int* token_ids, SizesC n) nogil:
cdef int idx, b, f
cdef const float* feature
cdef int B = n.states
cdef int O = n.hiddens * n.pieces # no-cython-lint
cdef int F = n.feats
cdef int T = n.tokens
padding = cached + (T * F * O)
cdef int id_stride = F*O
cdef float one = 1.
for b in range(B):
for f in range(F):
if token_ids[f] < 0:
feature = &padding[f*O]
else:
idx = token_ids[f] * id_stride + f*O
feature = &cached[idx]
saxpy(cblas)(O, one, <const float*>feature, 1, &output[b*O], 1)
token_ids += F