mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	* Replace Pipe type with Callable in Language * Use Callable[[Doc], Doc] in the docstrings
		
			
				
	
	
		
			898 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			898 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import random
 | 
						|
 | 
						|
import numpy.random
 | 
						|
import pytest
 | 
						|
from numpy.testing import assert_almost_equal
 | 
						|
from thinc.api import Config, compounding, fix_random_seed, get_current_ops
 | 
						|
from wasabi import msg
 | 
						|
 | 
						|
import spacy
 | 
						|
from spacy import util
 | 
						|
from spacy.cli.evaluate import print_prf_per_type, print_textcats_auc_per_cat
 | 
						|
from spacy.lang.en import English
 | 
						|
from spacy.language import Language
 | 
						|
from spacy.pipeline import TextCategorizer
 | 
						|
from spacy.pipeline.textcat import single_label_bow_config
 | 
						|
from spacy.pipeline.textcat import single_label_cnn_config
 | 
						|
from spacy.pipeline.textcat import single_label_default_config
 | 
						|
from spacy.pipeline.textcat_multilabel import multi_label_bow_config
 | 
						|
from spacy.pipeline.textcat_multilabel import multi_label_cnn_config
 | 
						|
from spacy.pipeline.textcat_multilabel import multi_label_default_config
 | 
						|
from spacy.pipeline.tok2vec import DEFAULT_TOK2VEC_MODEL
 | 
						|
from spacy.scorer import Scorer
 | 
						|
from spacy.tokens import Doc, DocBin
 | 
						|
from spacy.training import Example
 | 
						|
from spacy.training.initialize import init_nlp
 | 
						|
 | 
						|
from ..util import make_tempdir
 | 
						|
 | 
						|
TRAIN_DATA_SINGLE_LABEL = [
 | 
						|
    ("I'm so happy.", {"cats": {"POSITIVE": 1.0, "NEGATIVE": 0.0}}),
 | 
						|
    ("I'm so angry", {"cats": {"POSITIVE": 0.0, "NEGATIVE": 1.0}}),
 | 
						|
]
 | 
						|
 | 
						|
TRAIN_DATA_MULTI_LABEL = [
 | 
						|
    ("I'm angry and confused", {"cats": {"ANGRY": 1.0, "CONFUSED": 1.0, "HAPPY": 0.0}}),
 | 
						|
    ("I'm confused but happy", {"cats": {"ANGRY": 0.0, "CONFUSED": 1.0, "HAPPY": 1.0}}),
 | 
						|
]
 | 
						|
 | 
						|
 | 
						|
def make_get_examples_single_label(nlp):
 | 
						|
    train_examples = []
 | 
						|
    for t in TRAIN_DATA_SINGLE_LABEL:
 | 
						|
        train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
 | 
						|
 | 
						|
    def get_examples():
 | 
						|
        return train_examples
 | 
						|
 | 
						|
    return get_examples
 | 
						|
 | 
						|
 | 
						|
def make_get_examples_multi_label(nlp):
 | 
						|
    train_examples = []
 | 
						|
    for t in TRAIN_DATA_MULTI_LABEL:
 | 
						|
        train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
 | 
						|
 | 
						|
    def get_examples():
 | 
						|
        return train_examples
 | 
						|
 | 
						|
    return get_examples
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.issue(3611)
 | 
						|
def test_issue3611():
 | 
						|
    """Test whether adding n-grams in the textcat works even when n > token length of some docs"""
 | 
						|
    unique_classes = ["offensive", "inoffensive"]
 | 
						|
    x_train = [
 | 
						|
        "This is an offensive text",
 | 
						|
        "This is the second offensive text",
 | 
						|
        "inoff",
 | 
						|
    ]
 | 
						|
    y_train = ["offensive", "offensive", "inoffensive"]
 | 
						|
    nlp = spacy.blank("en")
 | 
						|
    # preparing the data
 | 
						|
    train_data = []
 | 
						|
    for text, train_instance in zip(x_train, y_train):
 | 
						|
        cat_dict = {label: label == train_instance for label in unique_classes}
 | 
						|
        train_data.append(Example.from_dict(nlp.make_doc(text), {"cats": cat_dict}))
 | 
						|
    # add a text categorizer component
 | 
						|
    model = {
 | 
						|
        "@architectures": "spacy.TextCatBOW.v1",
 | 
						|
        "exclusive_classes": True,
 | 
						|
        "ngram_size": 2,
 | 
						|
        "no_output_layer": False,
 | 
						|
    }
 | 
						|
    textcat = nlp.add_pipe("textcat", config={"model": model}, last=True)
 | 
						|
    for label in unique_classes:
 | 
						|
        textcat.add_label(label)
 | 
						|
    # training the network
 | 
						|
    with nlp.select_pipes(enable="textcat"):
 | 
						|
        optimizer = nlp.initialize()
 | 
						|
        for i in range(3):
 | 
						|
            losses = {}
 | 
						|
            batches = util.minibatch(train_data, size=compounding(4.0, 32.0, 1.001))
 | 
						|
 | 
						|
            for batch in batches:
 | 
						|
                nlp.update(examples=batch, sgd=optimizer, drop=0.1, losses=losses)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.issue(4030)
 | 
						|
def test_issue4030():
 | 
						|
    """Test whether textcat works fine with empty doc"""
 | 
						|
    unique_classes = ["offensive", "inoffensive"]
 | 
						|
    x_train = [
 | 
						|
        "This is an offensive text",
 | 
						|
        "This is the second offensive text",
 | 
						|
        "inoff",
 | 
						|
    ]
 | 
						|
    y_train = ["offensive", "offensive", "inoffensive"]
 | 
						|
    nlp = spacy.blank("en")
 | 
						|
    # preparing the data
 | 
						|
    train_data = []
 | 
						|
    for text, train_instance in zip(x_train, y_train):
 | 
						|
        cat_dict = {label: label == train_instance for label in unique_classes}
 | 
						|
        train_data.append(Example.from_dict(nlp.make_doc(text), {"cats": cat_dict}))
 | 
						|
    # add a text categorizer component
 | 
						|
    model = {
 | 
						|
        "@architectures": "spacy.TextCatBOW.v1",
 | 
						|
        "exclusive_classes": True,
 | 
						|
        "ngram_size": 2,
 | 
						|
        "no_output_layer": False,
 | 
						|
    }
 | 
						|
    textcat = nlp.add_pipe("textcat", config={"model": model}, last=True)
 | 
						|
    for label in unique_classes:
 | 
						|
        textcat.add_label(label)
 | 
						|
    # training the network
 | 
						|
    with nlp.select_pipes(enable="textcat"):
 | 
						|
        optimizer = nlp.initialize()
 | 
						|
        for i in range(3):
 | 
						|
            losses = {}
 | 
						|
            batches = util.minibatch(train_data, size=compounding(4.0, 32.0, 1.001))
 | 
						|
 | 
						|
            for batch in batches:
 | 
						|
                nlp.update(examples=batch, sgd=optimizer, drop=0.1, losses=losses)
 | 
						|
    # processing of an empty doc should result in 0.0 for all categories
 | 
						|
    doc = nlp("")
 | 
						|
    assert doc.cats["offensive"] == 0.0
 | 
						|
    assert doc.cats["inoffensive"] == 0.0
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "textcat_config",
 | 
						|
    [
 | 
						|
        single_label_default_config,
 | 
						|
        single_label_bow_config,
 | 
						|
        single_label_cnn_config,
 | 
						|
        multi_label_default_config,
 | 
						|
        multi_label_bow_config,
 | 
						|
        multi_label_cnn_config,
 | 
						|
    ],
 | 
						|
)
 | 
						|
@pytest.mark.issue(5551)
 | 
						|
def test_issue5551(textcat_config):
 | 
						|
    """Test that after fixing the random seed, the results of the pipeline are truly identical"""
 | 
						|
    component = "textcat"
 | 
						|
 | 
						|
    pipe_cfg = Config().from_str(textcat_config)
 | 
						|
    results = []
 | 
						|
    for i in range(3):
 | 
						|
        fix_random_seed(0)
 | 
						|
        nlp = English()
 | 
						|
        text = "Once hot, form ping-pong-ball-sized balls of the mixture, each weighing roughly 25 g."
 | 
						|
        annots = {"cats": {"Labe1": 1.0, "Label2": 0.0, "Label3": 0.0}}
 | 
						|
        pipe = nlp.add_pipe(component, config=pipe_cfg, last=True)
 | 
						|
        for label in set(annots["cats"]):
 | 
						|
            pipe.add_label(label)
 | 
						|
        # Train
 | 
						|
        nlp.initialize()
 | 
						|
        doc = nlp.make_doc(text)
 | 
						|
        nlp.update([Example.from_dict(doc, annots)])
 | 
						|
        # Store the result of each iteration
 | 
						|
        result = pipe.model.predict([doc])
 | 
						|
        results.append(result[0])
 | 
						|
    # All results should be the same because of the fixed seed
 | 
						|
    assert len(results) == 3
 | 
						|
    ops = get_current_ops()
 | 
						|
    assert_almost_equal(ops.to_numpy(results[0]), ops.to_numpy(results[1]), decimal=5)
 | 
						|
    assert_almost_equal(ops.to_numpy(results[0]), ops.to_numpy(results[2]), decimal=5)
 | 
						|
 | 
						|
 | 
						|
CONFIG_ISSUE_6908 = """
 | 
						|
[paths]
 | 
						|
train = "TRAIN_PLACEHOLDER"
 | 
						|
raw = null
 | 
						|
init_tok2vec = null
 | 
						|
vectors = null
 | 
						|
 | 
						|
[system]
 | 
						|
seed = 0
 | 
						|
gpu_allocator = null
 | 
						|
 | 
						|
[nlp]
 | 
						|
lang = "en"
 | 
						|
pipeline = ["textcat"]
 | 
						|
tokenizer = {"@tokenizers":"spacy.Tokenizer.v1"}
 | 
						|
disabled = []
 | 
						|
before_creation = null
 | 
						|
after_creation = null
 | 
						|
after_pipeline_creation = null
 | 
						|
batch_size = 1000
 | 
						|
 | 
						|
[components]
 | 
						|
 | 
						|
[components.textcat]
 | 
						|
factory = "TEXTCAT_PLACEHOLDER"
 | 
						|
 | 
						|
[corpora]
 | 
						|
 | 
						|
[corpora.train]
 | 
						|
@readers = "spacy.Corpus.v1"
 | 
						|
path = ${paths:train}
 | 
						|
 | 
						|
[corpora.dev]
 | 
						|
@readers = "spacy.Corpus.v1"
 | 
						|
path = ${paths:train}
 | 
						|
 | 
						|
 | 
						|
[training]
 | 
						|
train_corpus = "corpora.train"
 | 
						|
dev_corpus = "corpora.dev"
 | 
						|
seed = ${system.seed}
 | 
						|
gpu_allocator = ${system.gpu_allocator}
 | 
						|
frozen_components = []
 | 
						|
before_to_disk = null
 | 
						|
 | 
						|
[pretraining]
 | 
						|
 | 
						|
[initialize]
 | 
						|
vectors = ${paths.vectors}
 | 
						|
init_tok2vec = ${paths.init_tok2vec}
 | 
						|
vocab_data = null
 | 
						|
lookups = null
 | 
						|
before_init = null
 | 
						|
after_init = null
 | 
						|
 | 
						|
[initialize.components]
 | 
						|
 | 
						|
[initialize.components.textcat]
 | 
						|
labels = ['label1', 'label2']
 | 
						|
 | 
						|
[initialize.tokenizer]
 | 
						|
"""
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "component_name",
 | 
						|
    ["textcat", "textcat_multilabel"],
 | 
						|
)
 | 
						|
@pytest.mark.issue(6908)
 | 
						|
def test_issue6908(component_name):
 | 
						|
    """Test intializing textcat with labels in a list"""
 | 
						|
 | 
						|
    def create_data(out_file):
 | 
						|
        nlp = spacy.blank("en")
 | 
						|
        doc = nlp.make_doc("Some text")
 | 
						|
        doc.cats = {"label1": 0, "label2": 1}
 | 
						|
        out_data = DocBin(docs=[doc]).to_bytes()
 | 
						|
        with out_file.open("wb") as file_:
 | 
						|
            file_.write(out_data)
 | 
						|
 | 
						|
    with make_tempdir() as tmp_path:
 | 
						|
        train_path = tmp_path / "train.spacy"
 | 
						|
        create_data(train_path)
 | 
						|
        config_str = CONFIG_ISSUE_6908.replace("TEXTCAT_PLACEHOLDER", component_name)
 | 
						|
        config_str = config_str.replace("TRAIN_PLACEHOLDER", train_path.as_posix())
 | 
						|
        config = util.load_config_from_str(config_str)
 | 
						|
        init_nlp(config)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.issue(7019)
 | 
						|
def test_issue7019():
 | 
						|
    scores = {"LABEL_A": 0.39829102, "LABEL_B": 0.938298329382, "LABEL_C": None}
 | 
						|
    print_textcats_auc_per_cat(msg, scores)
 | 
						|
    scores = {
 | 
						|
        "LABEL_A": {"p": 0.3420302, "r": 0.3929020, "f": 0.49823928932},
 | 
						|
        "LABEL_B": {"p": None, "r": None, "f": None},
 | 
						|
    }
 | 
						|
    print_prf_per_type(msg, scores, name="foo", type="bar")
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.issue(9904)
 | 
						|
def test_issue9904():
 | 
						|
    nlp = Language()
 | 
						|
    textcat = nlp.add_pipe("textcat")
 | 
						|
    get_examples = make_get_examples_single_label(nlp)
 | 
						|
    nlp.initialize(get_examples)
 | 
						|
 | 
						|
    examples = get_examples()
 | 
						|
    scores = textcat.predict([eg.predicted for eg in examples])
 | 
						|
 | 
						|
    loss = textcat.get_loss(examples, scores)[0]
 | 
						|
    loss_double_bs = textcat.get_loss(examples * 2, scores.repeat(2, axis=0))[0]
 | 
						|
    assert loss == pytest.approx(loss_double_bs)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.skip(reason="Test is flakey when run with others")
 | 
						|
def test_simple_train():
 | 
						|
    nlp = Language()
 | 
						|
    textcat = nlp.add_pipe("textcat")
 | 
						|
    textcat.add_label("answer")
 | 
						|
    nlp.initialize()
 | 
						|
    for i in range(5):
 | 
						|
        for text, answer in [
 | 
						|
            ("aaaa", 1.0),
 | 
						|
            ("bbbb", 0),
 | 
						|
            ("aa", 1.0),
 | 
						|
            ("bbbbbbbbb", 0.0),
 | 
						|
            ("aaaaaa", 1),
 | 
						|
        ]:
 | 
						|
            nlp.update((text, {"cats": {"answer": answer}}))
 | 
						|
    doc = nlp("aaa")
 | 
						|
    assert "answer" in doc.cats
 | 
						|
    assert doc.cats["answer"] >= 0.5
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.skip(reason="Test is flakey when run with others")
 | 
						|
def test_textcat_learns_multilabel():
 | 
						|
    random.seed(5)
 | 
						|
    numpy.random.seed(5)
 | 
						|
    docs = []
 | 
						|
    nlp = Language()
 | 
						|
    letters = ["a", "b", "c"]
 | 
						|
    for w1 in letters:
 | 
						|
        for w2 in letters:
 | 
						|
            cats = {letter: float(w2 == letter) for letter in letters}
 | 
						|
            docs.append((Doc(nlp.vocab, words=["d"] * 3 + [w1, w2] + ["d"] * 3), cats))
 | 
						|
    random.shuffle(docs)
 | 
						|
    textcat = TextCategorizer(nlp.vocab, width=8)
 | 
						|
    for letter in letters:
 | 
						|
        textcat.add_label(letter)
 | 
						|
    optimizer = textcat.initialize(lambda: [])
 | 
						|
    for i in range(30):
 | 
						|
        losses = {}
 | 
						|
        examples = [Example.from_dict(doc, {"cats": cats}) for doc, cat in docs]
 | 
						|
        textcat.update(examples, sgd=optimizer, losses=losses)
 | 
						|
        random.shuffle(docs)
 | 
						|
    for w1 in letters:
 | 
						|
        for w2 in letters:
 | 
						|
            doc = Doc(nlp.vocab, words=["d"] * 3 + [w1, w2] + ["d"] * 3)
 | 
						|
            truth = {letter: w2 == letter for letter in letters}
 | 
						|
            textcat(doc)
 | 
						|
            for cat, score in doc.cats.items():
 | 
						|
                if not truth[cat]:
 | 
						|
                    assert score < 0.5
 | 
						|
                else:
 | 
						|
                    assert score > 0.5
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("name", ["textcat", "textcat_multilabel"])
 | 
						|
def test_label_types(name):
 | 
						|
    nlp = Language()
 | 
						|
    textcat = nlp.add_pipe(name)
 | 
						|
    textcat.add_label("answer")
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        textcat.add_label(9)
 | 
						|
    # textcat requires at least two labels
 | 
						|
    if name == "textcat":
 | 
						|
        with pytest.raises(ValueError):
 | 
						|
            nlp.initialize()
 | 
						|
    else:
 | 
						|
        nlp.initialize()
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "name,get_examples",
 | 
						|
    [
 | 
						|
        ("textcat", make_get_examples_single_label),
 | 
						|
        ("textcat_multilabel", make_get_examples_multi_label),
 | 
						|
    ],
 | 
						|
)
 | 
						|
def test_invalid_label_value(name, get_examples):
 | 
						|
    nlp = Language()
 | 
						|
    textcat = nlp.add_pipe(name)
 | 
						|
    example_getter = get_examples(nlp)
 | 
						|
 | 
						|
    def invalid_examples():
 | 
						|
        # make one example with an invalid score
 | 
						|
        examples = example_getter()
 | 
						|
        ref = examples[0].reference
 | 
						|
        key = list(ref.cats.keys())[0]
 | 
						|
        ref.cats[key] = 2.0
 | 
						|
        return examples
 | 
						|
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        nlp.initialize(get_examples=invalid_examples)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("name", ["textcat", "textcat_multilabel"])
 | 
						|
def test_no_label(name):
 | 
						|
    nlp = Language()
 | 
						|
    nlp.add_pipe(name)
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        nlp.initialize()
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "name,get_examples",
 | 
						|
    [
 | 
						|
        ("textcat", make_get_examples_single_label),
 | 
						|
        ("textcat_multilabel", make_get_examples_multi_label),
 | 
						|
    ],
 | 
						|
)
 | 
						|
def test_implicit_label(name, get_examples):
 | 
						|
    nlp = Language()
 | 
						|
    nlp.add_pipe(name)
 | 
						|
    nlp.initialize(get_examples=get_examples(nlp))
 | 
						|
 | 
						|
 | 
						|
# fmt: off
 | 
						|
@pytest.mark.slow
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "name,textcat_config",
 | 
						|
    [
 | 
						|
        # BOW
 | 
						|
        ("textcat", {"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": True, "no_output_layer": False, "ngram_size": 3}),
 | 
						|
        ("textcat", {"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": True, "no_output_layer": True, "ngram_size": 3}),
 | 
						|
        ("textcat_multilabel", {"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": False, "no_output_layer": False, "ngram_size": 3}),
 | 
						|
        ("textcat_multilabel", {"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": False, "no_output_layer": True, "ngram_size": 3}),
 | 
						|
        # ENSEMBLE V1
 | 
						|
        ("textcat", {"@architectures": "spacy.TextCatEnsemble.v1", "exclusive_classes": False, "pretrained_vectors": None, "width": 64, "embed_size": 2000, "conv_depth": 2, "window_size": 1, "ngram_size": 1, "dropout": None}),
 | 
						|
        ("textcat_multilabel", {"@architectures": "spacy.TextCatEnsemble.v1", "exclusive_classes": False, "pretrained_vectors": None, "width": 64, "embed_size": 2000, "conv_depth": 2, "window_size": 1, "ngram_size": 1, "dropout": None}),
 | 
						|
        # ENSEMBLE V2
 | 
						|
        ("textcat", {"@architectures": "spacy.TextCatEnsemble.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "linear_model": {"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": True, "no_output_layer": False, "ngram_size": 3}}),
 | 
						|
        ("textcat", {"@architectures": "spacy.TextCatEnsemble.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "linear_model": {"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": True, "no_output_layer": True, "ngram_size": 3}}),
 | 
						|
        ("textcat_multilabel", {"@architectures": "spacy.TextCatEnsemble.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "linear_model": {"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": False, "no_output_layer": False, "ngram_size": 3}}),
 | 
						|
        ("textcat_multilabel", {"@architectures": "spacy.TextCatEnsemble.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "linear_model": {"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": False, "no_output_layer": True, "ngram_size": 3}}),
 | 
						|
        # CNN
 | 
						|
        ("textcat", {"@architectures": "spacy.TextCatCNN.v1", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": True}),
 | 
						|
        ("textcat_multilabel", {"@architectures": "spacy.TextCatCNN.v1", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": False}),
 | 
						|
    ],
 | 
						|
)
 | 
						|
# fmt: on
 | 
						|
def test_no_resize(name, textcat_config):
 | 
						|
    """The old textcat architectures weren't resizable"""
 | 
						|
    nlp = Language()
 | 
						|
    pipe_config = {"model": textcat_config}
 | 
						|
    textcat = nlp.add_pipe(name, config=pipe_config)
 | 
						|
    textcat.add_label("POSITIVE")
 | 
						|
    textcat.add_label("NEGATIVE")
 | 
						|
    nlp.initialize()
 | 
						|
    assert textcat.model.maybe_get_dim("nO") in [2, None]
 | 
						|
    # this throws an error because the textcat can't be resized after initialization
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        textcat.add_label("NEUTRAL")
 | 
						|
 | 
						|
 | 
						|
# fmt: off
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "name,textcat_config",
 | 
						|
    [
 | 
						|
        # BOW
 | 
						|
        ("textcat", {"@architectures": "spacy.TextCatBOW.v2", "exclusive_classes": True, "no_output_layer": False, "ngram_size": 3}),
 | 
						|
        ("textcat", {"@architectures": "spacy.TextCatBOW.v2", "exclusive_classes": True, "no_output_layer": True, "ngram_size": 3}),
 | 
						|
        ("textcat_multilabel", {"@architectures": "spacy.TextCatBOW.v2", "exclusive_classes": False, "no_output_layer": False, "ngram_size": 3}),
 | 
						|
        ("textcat_multilabel", {"@architectures": "spacy.TextCatBOW.v2", "exclusive_classes": False, "no_output_layer": True, "ngram_size": 3}),
 | 
						|
        # CNN
 | 
						|
        ("textcat", {"@architectures": "spacy.TextCatCNN.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": True}),
 | 
						|
        ("textcat_multilabel", {"@architectures": "spacy.TextCatCNN.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": False}),
 | 
						|
    ],
 | 
						|
)
 | 
						|
# fmt: on
 | 
						|
def test_resize(name, textcat_config):
 | 
						|
    """The new textcat architectures are resizable"""
 | 
						|
    nlp = Language()
 | 
						|
    pipe_config = {"model": textcat_config}
 | 
						|
    textcat = nlp.add_pipe(name, config=pipe_config)
 | 
						|
    textcat.add_label("POSITIVE")
 | 
						|
    textcat.add_label("NEGATIVE")
 | 
						|
    assert textcat.model.maybe_get_dim("nO") in [2, None]
 | 
						|
    nlp.initialize()
 | 
						|
    assert textcat.model.maybe_get_dim("nO") in [2, None]
 | 
						|
    textcat.add_label("NEUTRAL")
 | 
						|
    assert textcat.model.maybe_get_dim("nO") in [3, None]
 | 
						|
 | 
						|
 | 
						|
# fmt: off
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "name,textcat_config",
 | 
						|
    [
 | 
						|
        # BOW
 | 
						|
        ("textcat", {"@architectures": "spacy.TextCatBOW.v2", "exclusive_classes": True, "no_output_layer": False, "ngram_size": 3}),
 | 
						|
        ("textcat", {"@architectures": "spacy.TextCatBOW.v2", "exclusive_classes": True, "no_output_layer": True, "ngram_size": 3}),
 | 
						|
        ("textcat_multilabel", {"@architectures": "spacy.TextCatBOW.v2", "exclusive_classes": False, "no_output_layer": False, "ngram_size": 3}),
 | 
						|
        ("textcat_multilabel", {"@architectures": "spacy.TextCatBOW.v2", "exclusive_classes": False, "no_output_layer": True, "ngram_size": 3}),
 | 
						|
        # CNN
 | 
						|
        ("textcat", {"@architectures": "spacy.TextCatCNN.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": True}),
 | 
						|
        ("textcat_multilabel", {"@architectures": "spacy.TextCatCNN.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": False}),
 | 
						|
    ],
 | 
						|
)
 | 
						|
# fmt: on
 | 
						|
def test_resize_same_results(name, textcat_config):
 | 
						|
    # Ensure that the resized textcat classifiers still produce the same results for old labels
 | 
						|
    fix_random_seed(0)
 | 
						|
    nlp = English()
 | 
						|
    pipe_config = {"model": textcat_config}
 | 
						|
    textcat = nlp.add_pipe(name, config=pipe_config)
 | 
						|
 | 
						|
    train_examples = []
 | 
						|
    for text, annotations in TRAIN_DATA_SINGLE_LABEL:
 | 
						|
        train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
 | 
						|
    optimizer = nlp.initialize(get_examples=lambda: train_examples)
 | 
						|
    assert textcat.model.maybe_get_dim("nO") in [2, None]
 | 
						|
 | 
						|
    for i in range(5):
 | 
						|
        losses = {}
 | 
						|
        nlp.update(train_examples, sgd=optimizer, losses=losses)
 | 
						|
 | 
						|
    # test the trained model before resizing
 | 
						|
    test_text = "I am happy."
 | 
						|
    doc = nlp(test_text)
 | 
						|
    assert len(doc.cats) == 2
 | 
						|
    pos_pred = doc.cats["POSITIVE"]
 | 
						|
    neg_pred = doc.cats["NEGATIVE"]
 | 
						|
 | 
						|
    # test the trained model again after resizing
 | 
						|
    textcat.add_label("NEUTRAL")
 | 
						|
    doc = nlp(test_text)
 | 
						|
    assert len(doc.cats) == 3
 | 
						|
    assert doc.cats["POSITIVE"] == pos_pred
 | 
						|
    assert doc.cats["NEGATIVE"] == neg_pred
 | 
						|
    assert doc.cats["NEUTRAL"] <= 1
 | 
						|
 | 
						|
    for i in range(5):
 | 
						|
        losses = {}
 | 
						|
        nlp.update(train_examples, sgd=optimizer, losses=losses)
 | 
						|
 | 
						|
    # test the trained model again after training further with new label
 | 
						|
    doc = nlp(test_text)
 | 
						|
    assert len(doc.cats) == 3
 | 
						|
    assert doc.cats["POSITIVE"] != pos_pred
 | 
						|
    assert doc.cats["NEGATIVE"] != neg_pred
 | 
						|
    for cat in doc.cats:
 | 
						|
        assert doc.cats[cat] <= 1
 | 
						|
 | 
						|
 | 
						|
def test_error_with_multi_labels():
 | 
						|
    nlp = Language()
 | 
						|
    nlp.add_pipe("textcat")
 | 
						|
    train_examples = []
 | 
						|
    for text, annotations in TRAIN_DATA_MULTI_LABEL:
 | 
						|
        train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        nlp.initialize(get_examples=lambda: train_examples)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "name,get_examples, train_data",
 | 
						|
    [
 | 
						|
        ("textcat", make_get_examples_single_label, TRAIN_DATA_SINGLE_LABEL),
 | 
						|
        ("textcat_multilabel", make_get_examples_multi_label, TRAIN_DATA_MULTI_LABEL),
 | 
						|
    ],
 | 
						|
)
 | 
						|
def test_initialize_examples(name, get_examples, train_data):
 | 
						|
    nlp = Language()
 | 
						|
    textcat = nlp.add_pipe(name)
 | 
						|
    for text, annotations in train_data:
 | 
						|
        for label, value in annotations.get("cats").items():
 | 
						|
            textcat.add_label(label)
 | 
						|
    # you shouldn't really call this more than once, but for testing it should be fine
 | 
						|
    nlp.initialize()
 | 
						|
    nlp.initialize(get_examples=get_examples(nlp))
 | 
						|
    with pytest.raises(TypeError):
 | 
						|
        nlp.initialize(get_examples=lambda: None)
 | 
						|
    with pytest.raises(TypeError):
 | 
						|
        nlp.initialize(get_examples=get_examples())
 | 
						|
 | 
						|
 | 
						|
def test_overfitting_IO():
 | 
						|
    # Simple test to try and quickly overfit the single-label textcat component - ensuring the ML models work correctly
 | 
						|
    fix_random_seed(0)
 | 
						|
    nlp = English()
 | 
						|
    textcat = nlp.add_pipe("textcat")
 | 
						|
 | 
						|
    train_examples = []
 | 
						|
    for text, annotations in TRAIN_DATA_SINGLE_LABEL:
 | 
						|
        train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
 | 
						|
    optimizer = nlp.initialize(get_examples=lambda: train_examples)
 | 
						|
    assert textcat.model.get_dim("nO") == 2
 | 
						|
 | 
						|
    for i in range(50):
 | 
						|
        losses = {}
 | 
						|
        nlp.update(train_examples, sgd=optimizer, losses=losses)
 | 
						|
    assert losses["textcat"] < 0.01
 | 
						|
 | 
						|
    # test the trained model
 | 
						|
    test_text = "I am happy."
 | 
						|
    doc = nlp(test_text)
 | 
						|
    cats = doc.cats
 | 
						|
    assert cats["POSITIVE"] > 0.9
 | 
						|
    assert cats["POSITIVE"] + cats["NEGATIVE"] == pytest.approx(1.0, 0.001)
 | 
						|
 | 
						|
    # Also test the results are still the same after IO
 | 
						|
    with make_tempdir() as tmp_dir:
 | 
						|
        nlp.to_disk(tmp_dir)
 | 
						|
        nlp2 = util.load_model_from_path(tmp_dir)
 | 
						|
        doc2 = nlp2(test_text)
 | 
						|
        cats2 = doc2.cats
 | 
						|
        assert cats2["POSITIVE"] > 0.9
 | 
						|
        assert cats2["POSITIVE"] + cats2["NEGATIVE"] == pytest.approx(1.0, 0.001)
 | 
						|
 | 
						|
    # Test scoring
 | 
						|
    scores = nlp.evaluate(train_examples)
 | 
						|
    assert scores["cats_micro_f"] == 1.0
 | 
						|
    assert scores["cats_macro_f"] == 1.0
 | 
						|
    assert scores["cats_macro_auc"] == 1.0
 | 
						|
    assert scores["cats_score"] == 1.0
 | 
						|
    assert "cats_score_desc" in scores
 | 
						|
 | 
						|
    # Make sure that running pipe twice, or comparing to call, always amounts to the same predictions
 | 
						|
    texts = ["Just a sentence.", "I like green eggs.", "I am happy.", "I eat ham."]
 | 
						|
    batch_cats_1 = [doc.cats for doc in nlp.pipe(texts)]
 | 
						|
    batch_cats_2 = [doc.cats for doc in nlp.pipe(texts)]
 | 
						|
    no_batch_cats = [doc.cats for doc in [nlp(text) for text in texts]]
 | 
						|
    for cats_1, cats_2 in zip(batch_cats_1, batch_cats_2):
 | 
						|
        for cat in cats_1:
 | 
						|
            assert_almost_equal(cats_1[cat], cats_2[cat], decimal=5)
 | 
						|
    for cats_1, cats_2 in zip(batch_cats_1, no_batch_cats):
 | 
						|
        for cat in cats_1:
 | 
						|
            assert_almost_equal(cats_1[cat], cats_2[cat], decimal=5)
 | 
						|
 | 
						|
 | 
						|
def test_overfitting_IO_multi():
 | 
						|
    # Simple test to try and quickly overfit the multi-label textcat component - ensuring the ML models work correctly
 | 
						|
    fix_random_seed(0)
 | 
						|
    nlp = English()
 | 
						|
    textcat = nlp.add_pipe("textcat_multilabel")
 | 
						|
 | 
						|
    train_examples = []
 | 
						|
    for text, annotations in TRAIN_DATA_MULTI_LABEL:
 | 
						|
        train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
 | 
						|
    optimizer = nlp.initialize(get_examples=lambda: train_examples)
 | 
						|
    assert textcat.model.get_dim("nO") == 3
 | 
						|
 | 
						|
    for i in range(100):
 | 
						|
        losses = {}
 | 
						|
        nlp.update(train_examples, sgd=optimizer, losses=losses)
 | 
						|
    assert losses["textcat_multilabel"] < 0.01
 | 
						|
 | 
						|
    # test the trained model
 | 
						|
    test_text = "I am confused but happy."
 | 
						|
    doc = nlp(test_text)
 | 
						|
    cats = doc.cats
 | 
						|
    assert cats["HAPPY"] > 0.9
 | 
						|
    assert cats["CONFUSED"] > 0.9
 | 
						|
 | 
						|
    # Also test the results are still the same after IO
 | 
						|
    with make_tempdir() as tmp_dir:
 | 
						|
        nlp.to_disk(tmp_dir)
 | 
						|
        nlp2 = util.load_model_from_path(tmp_dir)
 | 
						|
        doc2 = nlp2(test_text)
 | 
						|
        cats2 = doc2.cats
 | 
						|
        assert cats2["HAPPY"] > 0.9
 | 
						|
        assert cats2["CONFUSED"] > 0.9
 | 
						|
 | 
						|
    # Test scoring
 | 
						|
    scores = nlp.evaluate(train_examples)
 | 
						|
    assert scores["cats_micro_f"] == 1.0
 | 
						|
    assert scores["cats_macro_f"] == 1.0
 | 
						|
    assert "cats_score_desc" in scores
 | 
						|
 | 
						|
    # Make sure that running pipe twice, or comparing to call, always amounts to the same predictions
 | 
						|
    texts = ["Just a sentence.", "I like green eggs.", "I am happy.", "I eat ham."]
 | 
						|
    batch_deps_1 = [doc.cats for doc in nlp.pipe(texts)]
 | 
						|
    batch_deps_2 = [doc.cats for doc in nlp.pipe(texts)]
 | 
						|
    no_batch_deps = [doc.cats for doc in [nlp(text) for text in texts]]
 | 
						|
    for cats_1, cats_2 in zip(batch_deps_1, batch_deps_2):
 | 
						|
        for cat in cats_1:
 | 
						|
            assert_almost_equal(cats_1[cat], cats_2[cat], decimal=5)
 | 
						|
    for cats_1, cats_2 in zip(batch_deps_1, no_batch_deps):
 | 
						|
        for cat in cats_1:
 | 
						|
            assert_almost_equal(cats_1[cat], cats_2[cat], decimal=5)
 | 
						|
 | 
						|
 | 
						|
# fmt: off
 | 
						|
@pytest.mark.slow
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "name,train_data,textcat_config",
 | 
						|
    [
 | 
						|
        # BOW V1
 | 
						|
        ("textcat_multilabel", TRAIN_DATA_MULTI_LABEL, {"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": False, "ngram_size": 1, "no_output_layer": False}),
 | 
						|
        ("textcat", TRAIN_DATA_SINGLE_LABEL, {"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": True, "ngram_size": 4, "no_output_layer": False}),
 | 
						|
        # ENSEMBLE V1
 | 
						|
        ("textcat_multilabel", TRAIN_DATA_MULTI_LABEL, {"@architectures": "spacy.TextCatEnsemble.v1", "exclusive_classes": False, "pretrained_vectors": None, "width": 64, "embed_size": 2000, "conv_depth": 2, "window_size": 1, "ngram_size": 1, "dropout": None}),
 | 
						|
        ("textcat", TRAIN_DATA_SINGLE_LABEL, {"@architectures": "spacy.TextCatEnsemble.v1", "exclusive_classes": False, "pretrained_vectors": None, "width": 64, "embed_size": 2000, "conv_depth": 2, "window_size": 1, "ngram_size": 1, "dropout": None}),
 | 
						|
        # CNN V1
 | 
						|
        ("textcat", TRAIN_DATA_SINGLE_LABEL, {"@architectures": "spacy.TextCatCNN.v1", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": True}),
 | 
						|
        ("textcat_multilabel", TRAIN_DATA_MULTI_LABEL, {"@architectures": "spacy.TextCatCNN.v1", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": False}),
 | 
						|
        # BOW V2
 | 
						|
        ("textcat_multilabel", TRAIN_DATA_MULTI_LABEL, {"@architectures": "spacy.TextCatBOW.v2", "exclusive_classes": False, "ngram_size": 1, "no_output_layer": False}),
 | 
						|
        ("textcat", TRAIN_DATA_SINGLE_LABEL, {"@architectures": "spacy.TextCatBOW.v2", "exclusive_classes": True, "ngram_size": 4, "no_output_layer": False}),
 | 
						|
        ("textcat_multilabel", TRAIN_DATA_MULTI_LABEL, {"@architectures": "spacy.TextCatBOW.v2", "exclusive_classes": False, "ngram_size": 3, "no_output_layer": True}),
 | 
						|
        ("textcat", TRAIN_DATA_SINGLE_LABEL, {"@architectures": "spacy.TextCatBOW.v2", "exclusive_classes": True, "ngram_size": 2, "no_output_layer": True}),
 | 
						|
        # ENSEMBLE V2
 | 
						|
        ("textcat_multilabel", TRAIN_DATA_MULTI_LABEL, {"@architectures": "spacy.TextCatEnsemble.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "linear_model": {"@architectures": "spacy.TextCatBOW.v2", "exclusive_classes": False, "ngram_size": 1, "no_output_layer": False}}),
 | 
						|
        ("textcat", TRAIN_DATA_SINGLE_LABEL, {"@architectures": "spacy.TextCatEnsemble.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "linear_model": {"@architectures": "spacy.TextCatBOW.v2", "exclusive_classes": True, "ngram_size": 5, "no_output_layer": False}}),
 | 
						|
        # CNN V2
 | 
						|
        ("textcat", TRAIN_DATA_SINGLE_LABEL, {"@architectures": "spacy.TextCatCNN.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": True}),
 | 
						|
        ("textcat_multilabel", TRAIN_DATA_MULTI_LABEL, {"@architectures": "spacy.TextCatCNN.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": False}),
 | 
						|
    ],
 | 
						|
)
 | 
						|
# fmt: on
 | 
						|
def test_textcat_configs(name, train_data, textcat_config):
 | 
						|
    pipe_config = {"model": textcat_config}
 | 
						|
    nlp = English()
 | 
						|
    textcat = nlp.add_pipe(name, config=pipe_config)
 | 
						|
    train_examples = []
 | 
						|
    for text, annotations in train_data:
 | 
						|
        train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
 | 
						|
        for label, value in annotations.get("cats").items():
 | 
						|
            textcat.add_label(label)
 | 
						|
    optimizer = nlp.initialize()
 | 
						|
    for i in range(5):
 | 
						|
        losses = {}
 | 
						|
        nlp.update(train_examples, sgd=optimizer, losses=losses)
 | 
						|
 | 
						|
 | 
						|
def test_positive_class():
 | 
						|
    nlp = English()
 | 
						|
    textcat = nlp.add_pipe("textcat")
 | 
						|
    get_examples = make_get_examples_single_label(nlp)
 | 
						|
    textcat.initialize(get_examples, labels=["POS", "NEG"], positive_label="POS")
 | 
						|
    assert textcat.labels == ("POS", "NEG")
 | 
						|
    assert textcat.cfg["positive_label"] == "POS"
 | 
						|
 | 
						|
    textcat_multilabel = nlp.add_pipe("textcat_multilabel")
 | 
						|
    get_examples = make_get_examples_multi_label(nlp)
 | 
						|
    with pytest.raises(TypeError):
 | 
						|
        textcat_multilabel.initialize(
 | 
						|
            get_examples, labels=["POS", "NEG"], positive_label="POS"
 | 
						|
        )
 | 
						|
    textcat_multilabel.initialize(get_examples, labels=["FICTION", "DRAMA"])
 | 
						|
    assert textcat_multilabel.labels == ("FICTION", "DRAMA")
 | 
						|
    assert "positive_label" not in textcat_multilabel.cfg
 | 
						|
 | 
						|
 | 
						|
def test_positive_class_not_present():
 | 
						|
    nlp = English()
 | 
						|
    textcat = nlp.add_pipe("textcat")
 | 
						|
    get_examples = make_get_examples_single_label(nlp)
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        textcat.initialize(get_examples, labels=["SOME", "THING"], positive_label="POS")
 | 
						|
 | 
						|
 | 
						|
def test_positive_class_not_binary():
 | 
						|
    nlp = English()
 | 
						|
    textcat = nlp.add_pipe("textcat")
 | 
						|
    get_examples = make_get_examples_multi_label(nlp)
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        textcat.initialize(
 | 
						|
            get_examples, labels=["SOME", "THING", "POS"], positive_label="POS"
 | 
						|
        )
 | 
						|
 | 
						|
 | 
						|
def test_textcat_evaluation():
 | 
						|
    train_examples = []
 | 
						|
    nlp = English()
 | 
						|
    ref1 = nlp("one")
 | 
						|
    ref1.cats = {"winter": 1.0, "summer": 1.0, "spring": 1.0, "autumn": 1.0}
 | 
						|
    pred1 = nlp("one")
 | 
						|
    pred1.cats = {"winter": 1.0, "summer": 0.0, "spring": 1.0, "autumn": 1.0}
 | 
						|
    train_examples.append(Example(pred1, ref1))
 | 
						|
 | 
						|
    ref2 = nlp("two")
 | 
						|
    ref2.cats = {"winter": 0.0, "summer": 0.0, "spring": 1.0, "autumn": 1.0}
 | 
						|
    pred2 = nlp("two")
 | 
						|
    pred2.cats = {"winter": 1.0, "summer": 0.0, "spring": 0.0, "autumn": 1.0}
 | 
						|
    train_examples.append(Example(pred2, ref2))
 | 
						|
 | 
						|
    scores = Scorer().score_cats(
 | 
						|
        train_examples, "cats", labels=["winter", "summer", "spring", "autumn"]
 | 
						|
    )
 | 
						|
    assert scores["cats_f_per_type"]["winter"]["p"] == 1 / 2
 | 
						|
    assert scores["cats_f_per_type"]["winter"]["r"] == 1 / 1
 | 
						|
    assert scores["cats_f_per_type"]["summer"]["p"] == 0
 | 
						|
    assert scores["cats_f_per_type"]["summer"]["r"] == 0 / 1
 | 
						|
    assert scores["cats_f_per_type"]["spring"]["p"] == 1 / 1
 | 
						|
    assert scores["cats_f_per_type"]["spring"]["r"] == 1 / 2
 | 
						|
    assert scores["cats_f_per_type"]["autumn"]["p"] == 2 / 2
 | 
						|
    assert scores["cats_f_per_type"]["autumn"]["r"] == 2 / 2
 | 
						|
 | 
						|
    assert scores["cats_micro_p"] == 4 / 5
 | 
						|
    assert scores["cats_micro_r"] == 4 / 6
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "multi_label,spring_p",
 | 
						|
    [(True, 1 / 1), (False, 1 / 2)],
 | 
						|
)
 | 
						|
def test_textcat_eval_missing(multi_label: bool, spring_p: float):
 | 
						|
    """
 | 
						|
    multi-label: the missing 'spring' in gold_doc_2 doesn't incur a penalty
 | 
						|
    exclusive labels: the missing 'spring' in gold_doc_2 is interpreted as 0.0"""
 | 
						|
    train_examples = []
 | 
						|
    nlp = English()
 | 
						|
 | 
						|
    ref1 = nlp("one")
 | 
						|
    ref1.cats = {"winter": 0.0, "summer": 0.0, "autumn": 0.0, "spring": 1.0}
 | 
						|
    pred1 = nlp("one")
 | 
						|
    pred1.cats = {"winter": 0.0, "summer": 0.0, "autumn": 0.0, "spring": 1.0}
 | 
						|
    train_examples.append(Example(ref1, pred1))
 | 
						|
 | 
						|
    ref2 = nlp("two")
 | 
						|
    # reference 'spring' is missing, pred 'spring' is 1
 | 
						|
    ref2.cats = {"winter": 0.0, "summer": 0.0, "autumn": 1.0}
 | 
						|
    pred2 = nlp("two")
 | 
						|
    pred2.cats = {"winter": 0.0, "summer": 0.0, "autumn": 0.0, "spring": 1.0}
 | 
						|
    train_examples.append(Example(pred2, ref2))
 | 
						|
 | 
						|
    scores = Scorer().score_cats(
 | 
						|
        train_examples,
 | 
						|
        "cats",
 | 
						|
        labels=["winter", "summer", "spring", "autumn"],
 | 
						|
        multi_label=multi_label,
 | 
						|
    )
 | 
						|
    assert scores["cats_f_per_type"]["spring"]["p"] == spring_p
 | 
						|
    assert scores["cats_f_per_type"]["spring"]["r"] == 1 / 1
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "multi_label,expected_loss",
 | 
						|
    [(True, 0), (False, 0.125)],
 | 
						|
)
 | 
						|
def test_textcat_loss(multi_label: bool, expected_loss: float):
 | 
						|
    """
 | 
						|
    multi-label: the missing 'spring' in gold_doc_2 doesn't incur an increase in loss
 | 
						|
    exclusive labels: the missing 'spring' in gold_doc_2 is interpreted as 0.0 and adds to the loss"""
 | 
						|
    train_examples = []
 | 
						|
    nlp = English()
 | 
						|
 | 
						|
    doc1 = nlp("one")
 | 
						|
    cats1 = {"winter": 0.0, "summer": 0.0, "autumn": 0.0, "spring": 1.0}
 | 
						|
    train_examples.append(Example.from_dict(doc1, {"cats": cats1}))
 | 
						|
 | 
						|
    doc2 = nlp("two")
 | 
						|
    cats2 = {"winter": 0.0, "summer": 0.0, "autumn": 1.0}
 | 
						|
    train_examples.append(Example.from_dict(doc2, {"cats": cats2}))
 | 
						|
 | 
						|
    if multi_label:
 | 
						|
        textcat = nlp.add_pipe("textcat_multilabel")
 | 
						|
    else:
 | 
						|
        textcat = nlp.add_pipe("textcat")
 | 
						|
    assert isinstance(textcat, TextCategorizer)
 | 
						|
    textcat.initialize(lambda: train_examples)
 | 
						|
    scores = textcat.model.ops.asarray(
 | 
						|
        [[0.0, 0.0, 0.0, 1.0], [0.0, 0.0, 1.0, 1.0]], dtype="f"  # type: ignore
 | 
						|
    )
 | 
						|
    loss, d_scores = textcat.get_loss(train_examples, scores)
 | 
						|
    assert loss == expected_loss
 | 
						|
 | 
						|
 | 
						|
def test_textcat_multilabel_threshold():
 | 
						|
    # Ensure the scorer can be called with a different threshold
 | 
						|
    nlp = English()
 | 
						|
    nlp.add_pipe("textcat_multilabel")
 | 
						|
 | 
						|
    train_examples = []
 | 
						|
    for text, annotations in TRAIN_DATA_SINGLE_LABEL:
 | 
						|
        train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
 | 
						|
    nlp.initialize(get_examples=lambda: train_examples)
 | 
						|
 | 
						|
    # score the model (it's not actually trained but that doesn't matter)
 | 
						|
    scores = nlp.evaluate(train_examples)
 | 
						|
    assert 0 <= scores["cats_score"] <= 1
 | 
						|
 | 
						|
    scores = nlp.evaluate(train_examples, scorer_cfg={"threshold": 1.0})
 | 
						|
    assert scores["cats_f_per_type"]["POSITIVE"]["r"] == 0
 | 
						|
 | 
						|
    scores = nlp.evaluate(train_examples, scorer_cfg={"threshold": 0})
 | 
						|
    macro_f = scores["cats_score"]
 | 
						|
    assert scores["cats_f_per_type"]["POSITIVE"]["r"] == 1.0
 | 
						|
 | 
						|
    scores = nlp.evaluate(
 | 
						|
        train_examples, scorer_cfg={"threshold": 0, "positive_label": "POSITIVE"}
 | 
						|
    )
 | 
						|
    pos_f = scores["cats_score"]
 | 
						|
    assert scores["cats_f_per_type"]["POSITIVE"]["r"] == 1.0
 | 
						|
    assert pos_f >= macro_f
 | 
						|
 | 
						|
 | 
						|
def test_textcat_multi_threshold():
 | 
						|
    # Ensure the scorer can be called with a different threshold
 | 
						|
    nlp = English()
 | 
						|
    nlp.add_pipe("textcat_multilabel")
 | 
						|
 | 
						|
    train_examples = []
 | 
						|
    for text, annotations in TRAIN_DATA_SINGLE_LABEL:
 | 
						|
        train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
 | 
						|
    nlp.initialize(get_examples=lambda: train_examples)
 | 
						|
 | 
						|
    # score the model (it's not actually trained but that doesn't matter)
 | 
						|
    scores = nlp.evaluate(train_examples)
 | 
						|
    assert 0 <= scores["cats_score"] <= 1
 | 
						|
 | 
						|
    scores = nlp.evaluate(train_examples, scorer_cfg={"threshold": 1.0})
 | 
						|
    assert scores["cats_f_per_type"]["POSITIVE"]["r"] == 0
 | 
						|
 | 
						|
    scores = nlp.evaluate(train_examples, scorer_cfg={"threshold": 0})
 | 
						|
    assert scores["cats_f_per_type"]["POSITIVE"]["r"] == 1.0
 |