mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	* Tidy up pipes * Fix init, defaults and raise custom errors * Update docs * Update docs [ci skip] * Apply suggestions from code review Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com> * Tidy up error handling and validation, fix consistency * Simplify get_examples check * Remove unused import [ci skip] Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
		
			
				
	
	
		
			114 lines
		
	
	
		
			3.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			114 lines
		
	
	
		
			3.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import pytest
 | 
						|
from thinc.api import Adam, fix_random_seed
 | 
						|
from spacy import registry
 | 
						|
from spacy.attrs import NORM
 | 
						|
from spacy.vocab import Vocab
 | 
						|
from spacy.gold import Example
 | 
						|
from spacy.tokens import Doc
 | 
						|
from spacy.pipeline import DependencyParser, EntityRecognizer
 | 
						|
from spacy.pipeline.ner import DEFAULT_NER_MODEL
 | 
						|
from spacy.pipeline.dep_parser import DEFAULT_PARSER_MODEL
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture
 | 
						|
def vocab():
 | 
						|
    return Vocab(lex_attr_getters={NORM: lambda s: s})
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture
 | 
						|
def parser(vocab):
 | 
						|
    config = {
 | 
						|
        "learn_tokens": False,
 | 
						|
        "min_action_freq": 30,
 | 
						|
        "update_with_oracle_cut_size": 100,
 | 
						|
    }
 | 
						|
    cfg = {"model": DEFAULT_PARSER_MODEL}
 | 
						|
    model = registry.make_from_config(cfg, validate=True)["model"]
 | 
						|
    parser = DependencyParser(vocab, model, **config)
 | 
						|
    return parser
 | 
						|
 | 
						|
 | 
						|
def test_init_parser(parser):
 | 
						|
    pass
 | 
						|
 | 
						|
 | 
						|
def _train_parser(parser):
 | 
						|
    fix_random_seed(1)
 | 
						|
    parser.add_label("left")
 | 
						|
    parser.begin_training(lambda: [], **parser.cfg)
 | 
						|
    sgd = Adam(0.001)
 | 
						|
 | 
						|
    for i in range(5):
 | 
						|
        losses = {}
 | 
						|
        doc = Doc(parser.vocab, words=["a", "b", "c", "d"])
 | 
						|
        gold = {"heads": [1, 1, 3, 3], "deps": ["left", "ROOT", "left", "ROOT"]}
 | 
						|
        example = Example.from_dict(doc, gold)
 | 
						|
        parser.update([example], sgd=sgd, losses=losses)
 | 
						|
    return parser
 | 
						|
 | 
						|
 | 
						|
def test_add_label(parser):
 | 
						|
    parser = _train_parser(parser)
 | 
						|
    parser.add_label("right")
 | 
						|
    sgd = Adam(0.001)
 | 
						|
    for i in range(100):
 | 
						|
        losses = {}
 | 
						|
        doc = Doc(parser.vocab, words=["a", "b", "c", "d"])
 | 
						|
        gold = {"heads": [1, 1, 3, 3], "deps": ["right", "ROOT", "left", "ROOT"]}
 | 
						|
        example = Example.from_dict(doc, gold)
 | 
						|
        parser.update([example], sgd=sgd, losses=losses)
 | 
						|
    doc = Doc(parser.vocab, words=["a", "b", "c", "d"])
 | 
						|
    doc = parser(doc)
 | 
						|
    assert doc[0].dep_ == "right"
 | 
						|
    assert doc[2].dep_ == "left"
 | 
						|
 | 
						|
 | 
						|
def test_add_label_deserializes_correctly():
 | 
						|
    config = {
 | 
						|
        "learn_tokens": False,
 | 
						|
        "min_action_freq": 30,
 | 
						|
        "update_with_oracle_cut_size": 100,
 | 
						|
    }
 | 
						|
    cfg = {"model": DEFAULT_NER_MODEL}
 | 
						|
    model = registry.make_from_config(cfg, validate=True)["model"]
 | 
						|
    ner1 = EntityRecognizer(Vocab(), model, **config)
 | 
						|
    ner1.add_label("C")
 | 
						|
    ner1.add_label("B")
 | 
						|
    ner1.add_label("A")
 | 
						|
    ner1.begin_training(lambda: [])
 | 
						|
    ner2 = EntityRecognizer(Vocab(), model, **config)
 | 
						|
 | 
						|
    # the second model needs to be resized before we can call from_bytes
 | 
						|
    ner2.model.attrs["resize_output"](ner2.model, ner1.moves.n_moves)
 | 
						|
    ner2.from_bytes(ner1.to_bytes())
 | 
						|
    assert ner1.moves.n_moves == ner2.moves.n_moves
 | 
						|
    for i in range(ner1.moves.n_moves):
 | 
						|
        assert ner1.moves.get_class_name(i) == ner2.moves.get_class_name(i)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "pipe_cls,n_moves,model_config",
 | 
						|
    [
 | 
						|
        (DependencyParser, 5, DEFAULT_PARSER_MODEL),
 | 
						|
        (EntityRecognizer, 4, DEFAULT_NER_MODEL),
 | 
						|
    ],
 | 
						|
)
 | 
						|
def test_add_label_get_label(pipe_cls, n_moves, model_config):
 | 
						|
    """Test that added labels are returned correctly. This test was added to
 | 
						|
    test for a bug in DependencyParser.labels that'd cause it to fail when
 | 
						|
    splitting the move names.
 | 
						|
    """
 | 
						|
    labels = ["A", "B", "C"]
 | 
						|
    model = registry.make_from_config({"model": model_config}, validate=True)["model"]
 | 
						|
    config = {
 | 
						|
        "learn_tokens": False,
 | 
						|
        "min_action_freq": 30,
 | 
						|
        "update_with_oracle_cut_size": 100,
 | 
						|
    }
 | 
						|
    pipe = pipe_cls(Vocab(), model, **config)
 | 
						|
    for label in labels:
 | 
						|
        pipe.add_label(label)
 | 
						|
    assert len(pipe.move_names) == len(labels) * n_moves
 | 
						|
    pipe_labels = sorted(list(pipe.labels))
 | 
						|
    assert pipe_labels == labels
 |