mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-30 23:47:31 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			115 lines
		
	
	
		
			4.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			115 lines
		
	
	
		
			4.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| #!/usr/bin/env python
 | |
| # coding: utf8
 | |
| """Example of training spaCy's named entity recognizer, starting off with an
 | |
| existing model or a blank model.
 | |
| 
 | |
| For more details, see the documentation:
 | |
| * Training: https://alpha.spacy.io/usage/training
 | |
| * NER: https://alpha.spacy.io/usage/linguistic-features#named-entities
 | |
| 
 | |
| Developed for: spaCy 2.0.0a18
 | |
| Last updated for: spaCy 2.0.0a18
 | |
| """
 | |
| from __future__ import unicode_literals, print_function
 | |
| 
 | |
| import plac
 | |
| import random
 | |
| from pathlib import Path
 | |
| 
 | |
| import spacy
 | |
| from spacy.gold import GoldParse, biluo_tags_from_offsets
 | |
| 
 | |
| 
 | |
| # training data
 | |
| TRAIN_DATA = [
 | |
|     ('Who is Shaka Khan?', [(7, 17, 'PERSON')]),
 | |
|     ('I like London and Berlin.', [(7, 13, 'LOC'), (18, 24, 'LOC')])
 | |
| ]
 | |
| 
 | |
| 
 | |
| @plac.annotations(
 | |
|     model=("Model name. Defaults to blank 'en' model.", "option", "m", str),
 | |
|     output_dir=("Optional output directory", "option", "o", Path),
 | |
|     n_iter=("Number of training iterations", "option", "n", int))
 | |
| def main(model=None, output_dir=None, n_iter=100):
 | |
|     """Load the model, set up the pipeline and train the entity recognizer."""
 | |
|     if model is not None:
 | |
|         nlp = spacy.load(model)  # load existing spaCy model
 | |
|         print("Loaded model '%s'" % model)
 | |
|     else:
 | |
|         nlp = spacy.blank('en')  # create blank Language class
 | |
|         print("Created blank 'en' model")
 | |
| 
 | |
|     # create the built-in pipeline components and add them to the pipeline
 | |
|     # nlp.create_pipe works for built-ins that are registered with spaCy
 | |
|     if 'ner' not in nlp.pipe_names:
 | |
|         ner = nlp.create_pipe('ner')
 | |
|         nlp.add_pipe(ner, last=True)
 | |
| 
 | |
|     # function that allows begin_training to get the training data
 | |
|     get_data = lambda: reformat_train_data(nlp.tokenizer, TRAIN_DATA)
 | |
| 
 | |
|     # get names of other pipes to disable them during training
 | |
|     other_pipes = [pipe for pipe in nlp.pipe_names if pipe != 'ner']
 | |
|     with nlp.disable_pipes(*other_pipes):  # only train NER
 | |
|         optimizer = nlp.begin_training(get_data)
 | |
|         for itn in range(n_iter):
 | |
|             random.shuffle(TRAIN_DATA)
 | |
|             losses = {}
 | |
|             for raw_text, entity_offsets in TRAIN_DATA:
 | |
|                 doc = nlp.make_doc(raw_text)
 | |
|                 gold = GoldParse(doc, entities=entity_offsets)
 | |
|                 nlp.update(
 | |
|                     [doc], # Batch of Doc objects
 | |
|                     [gold], # Batch of GoldParse objects
 | |
|                     drop=0.5, # Dropout -- make it harder to memorise data
 | |
|                     sgd=optimizer, # Callable to update weights
 | |
|                     losses=losses)
 | |
|             print(losses)
 | |
| 
 | |
|     # test the trained model
 | |
|     for text, _ in TRAIN_DATA:
 | |
|         doc = nlp(text)
 | |
|         print('Entities', [(ent.text, ent.label_) for ent in doc.ents])
 | |
|         print('Tokens', [(t.text, t.ent_type_, t.ent_iob) for t in doc])
 | |
| 
 | |
|     # save model to output directory
 | |
|     if output_dir is not None:
 | |
|         output_dir = Path(output_dir)
 | |
|         if not output_dir.exists():
 | |
|             output_dir.mkdir()
 | |
|         nlp.to_disk(output_dir)
 | |
|         print("Saved model to", output_dir)
 | |
| 
 | |
|         # test the saved model
 | |
|         print("Loading from", output_dir)
 | |
|         nlp2 = spacy.load(output_dir)
 | |
|         for text, _ in TRAIN_DATA:
 | |
|             doc = nlp2(text)
 | |
|             print('Entities', [(ent.text, ent.label_) for ent in doc.ents])
 | |
|             print('Tokens', [(t.text, t.ent_type_, t.ent_iob) for t in doc])
 | |
| 
 | |
| 
 | |
| def reformat_train_data(tokenizer, examples):
 | |
|     """Reformat data to match JSON format.
 | |
|     https://alpha.spacy.io/api/annotation#json-input
 | |
| 
 | |
|     tokenizer (Tokenizer): Tokenizer to process the raw text.
 | |
|     examples (list): The trainig data.
 | |
|     RETURNS (list): The reformatted training data."""
 | |
|     output = []
 | |
|     for i, (text, entity_offsets) in enumerate(examples):
 | |
|         doc = tokenizer(text)
 | |
|         ner_tags = biluo_tags_from_offsets(tokenizer(text), entity_offsets)
 | |
|         words = [w.text for w in doc]
 | |
|         tags = ['-'] * len(doc)
 | |
|         heads = [0] * len(doc)
 | |
|         deps = [''] * len(doc)
 | |
|         sentence = (range(len(doc)), words, tags, heads, deps, ner_tags)
 | |
|         output.append((text, [(sentence, [])]))
 | |
|     return output
 | |
| 
 | |
| 
 | |
| if __name__ == '__main__':
 | |
|     plac.call(main)
 |