mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-30 23:47:31 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			137 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			137 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| #!/usr/bin/env python
 | |
| # coding: utf8
 | |
| """Train a multi-label convolutional neural network text classifier on the
 | |
| IMDB dataset, using the TextCategorizer component. The dataset will be loaded
 | |
| automatically via Thinc's built-in dataset loader. The model is added to
 | |
| spacy.pipeline, and predictions are available via `doc.cats`. For more details,
 | |
| see the documentation:
 | |
| * Training: https://alpha.spacy.io/usage/training
 | |
| * Text classification: https://alpha.spacy.io/usage/text-classification
 | |
| 
 | |
| Developed for: spaCy 2.0.0a18
 | |
| Last updated for: spaCy 2.0.0a18
 | |
| """
 | |
| from __future__ import unicode_literals, print_function
 | |
| import plac
 | |
| import random
 | |
| from pathlib import Path
 | |
| import thinc.extra.datasets
 | |
| 
 | |
| import spacy
 | |
| from spacy.gold import GoldParse, minibatch
 | |
| from spacy.util import compounding
 | |
| from spacy.pipeline import TextCategorizer
 | |
| 
 | |
| 
 | |
| @plac.annotations(
 | |
|     model=("Model name. Defaults to blank 'en' model.", "option", "m", str),
 | |
|     output_dir=("Optional output directory", "option", "o", Path),
 | |
|     n_iter=("Number of training iterations", "option", "n", int))
 | |
| def main(model=None, output_dir=None, n_iter=20):
 | |
|     if model is not None:
 | |
|         nlp = spacy.load(model)  # load existing spaCy model
 | |
|         print("Loaded model '%s'" % model)
 | |
|     else:
 | |
|         nlp = spacy.blank('en')  # create blank Language class
 | |
|         print("Created blank 'en' model")
 | |
| 
 | |
|     # add the text classifier to the pipeline if it doesn't exist
 | |
|     # nlp.create_pipe works for built-ins that are registered with spaCy
 | |
|     if 'textcat' not in nlp.pipe_names:
 | |
|         # textcat = nlp.create_pipe('textcat')
 | |
|         textcat = TextCategorizer(nlp.vocab, labels=['POSITIVE'])
 | |
|         nlp.add_pipe(textcat, last=True)
 | |
|     # otherwise, get it, so we can add labels to it
 | |
|     else:
 | |
|         textcat = nlp.get_pipe('textcat')
 | |
| 
 | |
|     # add label to text classifier
 | |
|     # textcat.add_label('POSITIVE')
 | |
| 
 | |
|     # load the IMBD dataset
 | |
|     print("Loading IMDB data...")
 | |
|     (train_texts, train_cats), (dev_texts, dev_cats) = load_data(limit=2000)
 | |
|     train_docs = [nlp.tokenizer(text) for text in train_texts]
 | |
|     train_gold = [GoldParse(doc, cats=cats) for doc, cats in
 | |
|                   zip(train_docs, train_cats)]
 | |
|     train_data = list(zip(train_docs, train_gold))
 | |
| 
 | |
|     # get names of other pipes to disable them during training
 | |
|     other_pipes = [pipe for pipe in nlp.pipe_names if pipe != 'textcat']
 | |
|     with nlp.disable_pipes(*other_pipes):  # only train textcat
 | |
|         optimizer = nlp.begin_training()
 | |
|         print("Training the model...")
 | |
|         print('{:^5}\t{:^5}\t{:^5}\t{:^5}'.format('LOSS', 'P', 'R', 'F'))
 | |
|         for i in range(n_iter):
 | |
|             losses = {}
 | |
|             # batch up the examples using spaCy's minibatch
 | |
|             batches = minibatch(train_data, size=compounding(4., 128., 1.001))
 | |
|             for batch in batches:
 | |
|                 docs, golds = zip(*batch)
 | |
|                 nlp.update(docs, golds, sgd=optimizer, drop=0.2, losses=losses)
 | |
|             with textcat.model.use_params(optimizer.averages):
 | |
|                 # evaluate on the dev data split off in load_data()
 | |
|                 scores = evaluate(nlp.tokenizer, textcat, dev_texts, dev_cats)
 | |
|             print('{0:.3f}\t{0:.3f}\t{0:.3f}\t{0:.3f}'  # print a simple table
 | |
|                   .format(losses['textcat'], scores['textcat_p'],
 | |
|                           scores['textcat_r'], scores['textcat_f']))
 | |
| 
 | |
|     # test the trained model
 | |
|     test_text = "This movie sucked"
 | |
|     doc = nlp(test_text)
 | |
|     print(test_text, doc.cats)
 | |
| 
 | |
|     if output_dir is not None:
 | |
|         output_dir = Path(output_dir)
 | |
|         if not output_dir.exists():
 | |
|             output_dir.mkdir()
 | |
|         nlp.to_disk(output_dir)
 | |
|         print("Saved model to", output_dir)
 | |
| 
 | |
|         # test the saved model
 | |
|         print("Loading from", output_dir)
 | |
|         nlp2 = spacy.load(output_dir)
 | |
|         doc2 = nlp2(test_text)
 | |
|         print(test_text, doc2.cats)
 | |
| 
 | |
| 
 | |
| def load_data(limit=0, split=0.8):
 | |
|     """Load data from the IMDB dataset."""
 | |
|     # Partition off part of the train data for evaluation
 | |
|     train_data, _ = thinc.extra.datasets.imdb()
 | |
|     random.shuffle(train_data)
 | |
|     train_data = train_data[-limit:]
 | |
|     texts, labels = zip(*train_data)
 | |
|     cats = [{'POSITIVE': bool(y)} for y in labels]
 | |
|     split = int(len(train_data) * split)
 | |
|     return (texts[:split], cats[:split]), (texts[split:], cats[split:])
 | |
| 
 | |
| 
 | |
| def evaluate(tokenizer, textcat, texts, cats):
 | |
|     docs = (tokenizer(text) for text in texts)
 | |
|     tp = 1e-8  # True positives
 | |
|     fp = 1e-8  # False positives
 | |
|     fn = 1e-8  # False negatives
 | |
|     tn = 1e-8  # True negatives
 | |
|     for i, doc in enumerate(textcat.pipe(docs)):
 | |
|         gold = cats[i]
 | |
|         for label, score in doc.cats.items():
 | |
|             if label not in gold:
 | |
|                 continue
 | |
|             if score >= 0.5 and gold[label] >= 0.5:
 | |
|                 tp += 1.
 | |
|             elif score >= 0.5 and gold[label] < 0.5:
 | |
|                 fp += 1.
 | |
|             elif score < 0.5 and gold[label] < 0.5:
 | |
|                 tn += 1
 | |
|             elif score < 0.5 and gold[label] >= 0.5:
 | |
|                 fn += 1
 | |
|     precision = tp / (tp + fp)
 | |
|     recall = tp / (tp + fn)
 | |
|     f_score = 2 * (precision * recall) / (precision + recall)
 | |
|     return {'textcat_p': precision, 'textcat_r': recall, 'textcat_f': f_score}
 | |
| 
 | |
| 
 | |
| if __name__ == '__main__':
 | |
|     plac.call(main)
 |