mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-15 03:56:23 +03:00
7d50804644
* Migrate regressions 1-1000 * Move serialize test to correct file * Remove tests that won't work in v3 * Migrate regressions 1000-1500 Removed regression test 1250 because v3 doesn't support the old LEX scheme anymore. * Add missing imports in serializer tests * Migrate tests 1500-2000 * Migrate regressions from 2000-2500 * Migrate regressions from 2501-3000 * Migrate regressions from 3000-3501 * Migrate regressions from 3501-4000 * Migrate regressions from 4001-4500 * Migrate regressions from 4501-5000 * Migrate regressions from 5001-5501 * Migrate regressions from 5501 to 7000 * Migrate regressions from 7001 to 8000 * Migrate remaining regression tests * Fixing missing imports * Update docs with new system [ci skip] * Update CONTRIBUTING.md - Fix formatting - Update wording * Remove lemmatizer tests in el lang * Move a few tests into the general tokenizer * Separate Doc and DocBin tests
777 lines
26 KiB
Python
777 lines
26 KiB
Python
import re
|
|
|
|
import pytest
|
|
|
|
from spacy.attrs import IS_PUNCT, LOWER, ORTH
|
|
from spacy.errors import MatchPatternError
|
|
from spacy.lang.en import English
|
|
from spacy.lang.lex_attrs import LEX_ATTRS
|
|
from spacy.matcher import Matcher
|
|
from spacy.tokens import Doc, Span, Token
|
|
from spacy.vocab import Vocab
|
|
|
|
pattern1 = [{"ORTH": "A"}, {"ORTH": "A", "OP": "*"}]
|
|
pattern2 = [{"ORTH": "A", "OP": "*"}, {"ORTH": "A"}]
|
|
pattern3 = [{"ORTH": "A"}, {"ORTH": "A"}]
|
|
pattern4 = [{"ORTH": "B"}, {"ORTH": "A", "OP": "*"}, {"ORTH": "B"}]
|
|
pattern5 = [{"ORTH": "B", "OP": "*"}, {"ORTH": "A", "OP": "*"}, {"ORTH": "B"}]
|
|
|
|
re_pattern1 = "AA*"
|
|
re_pattern2 = "A*A"
|
|
re_pattern3 = "AA"
|
|
re_pattern4 = "BA*B"
|
|
re_pattern5 = "B*A*B"
|
|
|
|
longest1 = "A A A A A"
|
|
longest2 = "A A A A A"
|
|
longest3 = "A A"
|
|
longest4 = "B A A A A A B" # "FIRST" would be "B B"
|
|
longest5 = "B B A A A A A B"
|
|
|
|
|
|
@pytest.fixture
|
|
def text():
|
|
return "(BBAAAAAB)."
|
|
|
|
|
|
@pytest.fixture
|
|
def doc(en_tokenizer, text):
|
|
doc = en_tokenizer(" ".join(text))
|
|
return doc
|
|
|
|
|
|
@pytest.mark.issue(118)
|
|
@pytest.mark.parametrize(
|
|
"patterns",
|
|
[
|
|
[[{"LOWER": "celtics"}], [{"LOWER": "boston"}, {"LOWER": "celtics"}]],
|
|
[[{"LOWER": "boston"}, {"LOWER": "celtics"}], [{"LOWER": "celtics"}]],
|
|
],
|
|
)
|
|
def test_issue118(en_tokenizer, patterns):
|
|
"""Test a bug that arose from having overlapping matches"""
|
|
text = (
|
|
"how many points did lebron james score against the boston celtics last night"
|
|
)
|
|
doc = en_tokenizer(text)
|
|
ORG = doc.vocab.strings["ORG"]
|
|
matcher = Matcher(doc.vocab)
|
|
matcher.add("BostonCeltics", patterns)
|
|
assert len(list(doc.ents)) == 0
|
|
matches = [(ORG, start, end) for _, start, end in matcher(doc)]
|
|
assert matches == [(ORG, 9, 11), (ORG, 10, 11)]
|
|
doc.ents = matches[:1]
|
|
ents = list(doc.ents)
|
|
assert len(ents) == 1
|
|
assert ents[0].label == ORG
|
|
assert ents[0].start == 9
|
|
assert ents[0].end == 11
|
|
|
|
|
|
@pytest.mark.issue(118)
|
|
@pytest.mark.parametrize(
|
|
"patterns",
|
|
[
|
|
[[{"LOWER": "boston"}], [{"LOWER": "boston"}, {"LOWER": "celtics"}]],
|
|
[[{"LOWER": "boston"}, {"LOWER": "celtics"}], [{"LOWER": "boston"}]],
|
|
],
|
|
)
|
|
def test_issue118_prefix_reorder(en_tokenizer, patterns):
|
|
"""Test a bug that arose from having overlapping matches"""
|
|
text = (
|
|
"how many points did lebron james score against the boston celtics last night"
|
|
)
|
|
doc = en_tokenizer(text)
|
|
ORG = doc.vocab.strings["ORG"]
|
|
matcher = Matcher(doc.vocab)
|
|
matcher.add("BostonCeltics", patterns)
|
|
assert len(list(doc.ents)) == 0
|
|
matches = [(ORG, start, end) for _, start, end in matcher(doc)]
|
|
doc.ents += tuple(matches)[1:]
|
|
assert matches == [(ORG, 9, 10), (ORG, 9, 11)]
|
|
ents = doc.ents
|
|
assert len(ents) == 1
|
|
assert ents[0].label == ORG
|
|
assert ents[0].start == 9
|
|
assert ents[0].end == 11
|
|
|
|
|
|
@pytest.mark.issue(242)
|
|
def test_issue242(en_tokenizer):
|
|
"""Test overlapping multi-word phrases."""
|
|
text = "There are different food safety standards in different countries."
|
|
patterns = [
|
|
[{"LOWER": "food"}, {"LOWER": "safety"}],
|
|
[{"LOWER": "safety"}, {"LOWER": "standards"}],
|
|
]
|
|
doc = en_tokenizer(text)
|
|
matcher = Matcher(doc.vocab)
|
|
matcher.add("FOOD", patterns)
|
|
matches = [(ent_type, start, end) for ent_type, start, end in matcher(doc)]
|
|
match1, match2 = matches
|
|
assert match1[1] == 3
|
|
assert match1[2] == 5
|
|
assert match2[1] == 4
|
|
assert match2[2] == 6
|
|
with pytest.raises(ValueError):
|
|
# One token can only be part of one entity, so test that the matches
|
|
# can't be added as entities
|
|
doc.ents += tuple(matches)
|
|
|
|
|
|
@pytest.mark.issue(587)
|
|
def test_issue587(en_tokenizer):
|
|
"""Test that Matcher doesn't segfault on particular input"""
|
|
doc = en_tokenizer("a b; c")
|
|
matcher = Matcher(doc.vocab)
|
|
matcher.add("TEST1", [[{ORTH: "a"}, {ORTH: "b"}]])
|
|
matches = matcher(doc)
|
|
assert len(matches) == 1
|
|
matcher.add("TEST2", [[{ORTH: "a"}, {ORTH: "b"}, {IS_PUNCT: True}, {ORTH: "c"}]])
|
|
matches = matcher(doc)
|
|
assert len(matches) == 2
|
|
matcher.add("TEST3", [[{ORTH: "a"}, {ORTH: "b"}, {IS_PUNCT: True}, {ORTH: "d"}]])
|
|
matches = matcher(doc)
|
|
assert len(matches) == 2
|
|
|
|
|
|
@pytest.mark.issue(588)
|
|
def test_issue588(en_vocab):
|
|
"""Test if empty specs still cause an error when adding patterns"""
|
|
matcher = Matcher(en_vocab)
|
|
with pytest.raises(ValueError):
|
|
matcher.add("TEST", [[]])
|
|
|
|
|
|
@pytest.mark.issue(590)
|
|
def test_issue590(en_vocab):
|
|
"""Test overlapping matches"""
|
|
doc = Doc(en_vocab, words=["n", "=", "1", ";", "a", ":", "5", "%"])
|
|
matcher = Matcher(en_vocab)
|
|
matcher.add(
|
|
"ab", [[{"IS_ALPHA": True}, {"ORTH": ":"}, {"LIKE_NUM": True}, {"ORTH": "%"}]]
|
|
)
|
|
matcher.add("ab", [[{"IS_ALPHA": True}, {"ORTH": "="}, {"LIKE_NUM": True}]])
|
|
matches = matcher(doc)
|
|
assert len(matches) == 2
|
|
|
|
|
|
@pytest.mark.issue(615)
|
|
def test_issue615(en_tokenizer):
|
|
def merge_phrases(matcher, doc, i, matches):
|
|
"""Merge a phrase. We have to be careful here because we'll change the
|
|
token indices. To avoid problems, merge all the phrases once we're called
|
|
on the last match."""
|
|
if i != len(matches) - 1:
|
|
return None
|
|
spans = [Span(doc, start, end, label=label) for label, start, end in matches]
|
|
with doc.retokenize() as retokenizer:
|
|
for span in spans:
|
|
tag = "NNP" if span.label_ else span.root.tag_
|
|
attrs = {"tag": tag, "lemma": span.text}
|
|
retokenizer.merge(span, attrs=attrs)
|
|
doc.ents = doc.ents + (span,)
|
|
|
|
text = "The golf club is broken"
|
|
pattern = [{"ORTH": "golf"}, {"ORTH": "club"}]
|
|
label = "Sport_Equipment"
|
|
doc = en_tokenizer(text)
|
|
matcher = Matcher(doc.vocab)
|
|
matcher.add(label, [pattern], on_match=merge_phrases)
|
|
matcher(doc)
|
|
entities = list(doc.ents)
|
|
assert entities != []
|
|
assert entities[0].label != 0
|
|
|
|
|
|
@pytest.mark.issue(850)
|
|
def test_issue850():
|
|
"""The variable-length pattern matches the succeeding token. Check we
|
|
handle the ambiguity correctly."""
|
|
vocab = Vocab(lex_attr_getters={LOWER: lambda string: string.lower()})
|
|
matcher = Matcher(vocab)
|
|
pattern = [{"LOWER": "bob"}, {"OP": "*"}, {"LOWER": "frank"}]
|
|
matcher.add("FarAway", [pattern])
|
|
doc = Doc(matcher.vocab, words=["bob", "and", "and", "frank"])
|
|
match = matcher(doc)
|
|
assert len(match) == 1
|
|
ent_id, start, end = match[0]
|
|
assert start == 0
|
|
assert end == 4
|
|
|
|
|
|
@pytest.mark.issue(850)
|
|
def test_issue850_basic():
|
|
"""Test Matcher matches with '*' operator and Boolean flag"""
|
|
vocab = Vocab(lex_attr_getters={LOWER: lambda string: string.lower()})
|
|
matcher = Matcher(vocab)
|
|
pattern = [{"LOWER": "bob"}, {"OP": "*", "LOWER": "and"}, {"LOWER": "frank"}]
|
|
matcher.add("FarAway", [pattern])
|
|
doc = Doc(matcher.vocab, words=["bob", "and", "and", "frank"])
|
|
match = matcher(doc)
|
|
assert len(match) == 1
|
|
ent_id, start, end = match[0]
|
|
assert start == 0
|
|
assert end == 4
|
|
|
|
|
|
@pytest.mark.issue(1434)
|
|
def test_issue1434():
|
|
"""Test matches occur when optional element at end of short doc."""
|
|
pattern = [{"ORTH": "Hello"}, {"IS_ALPHA": True, "OP": "?"}]
|
|
vocab = Vocab(lex_attr_getters=LEX_ATTRS)
|
|
hello_world = Doc(vocab, words=["Hello", "World"])
|
|
hello = Doc(vocab, words=["Hello"])
|
|
matcher = Matcher(vocab)
|
|
matcher.add("MyMatcher", [pattern])
|
|
matches = matcher(hello_world)
|
|
assert matches
|
|
matches = matcher(hello)
|
|
assert matches
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"string,start,end",
|
|
[
|
|
("a", 0, 1),
|
|
("a b", 0, 2),
|
|
("a c", 0, 1),
|
|
("a b c", 0, 2),
|
|
("a b b c", 0, 3),
|
|
("a b b", 0, 3),
|
|
],
|
|
)
|
|
@pytest.mark.issue(1450)
|
|
def test_issue1450(string, start, end):
|
|
"""Test matcher works when patterns end with * operator."""
|
|
pattern = [{"ORTH": "a"}, {"ORTH": "b", "OP": "*"}]
|
|
matcher = Matcher(Vocab())
|
|
matcher.add("TSTEND", [pattern])
|
|
doc = Doc(Vocab(), words=string.split())
|
|
matches = matcher(doc)
|
|
if start is None or end is None:
|
|
assert matches == []
|
|
assert matches[-1][1] == start
|
|
assert matches[-1][2] == end
|
|
|
|
|
|
@pytest.mark.issue(1945)
|
|
def test_issue1945():
|
|
"""Test regression in Matcher introduced in v2.0.6."""
|
|
matcher = Matcher(Vocab())
|
|
matcher.add("MWE", [[{"orth": "a"}, {"orth": "a"}]])
|
|
doc = Doc(matcher.vocab, words=["a", "a", "a"])
|
|
matches = matcher(doc) # we should see two overlapping matches here
|
|
assert len(matches) == 2
|
|
assert matches[0][1:] == (0, 2)
|
|
assert matches[1][1:] == (1, 3)
|
|
|
|
|
|
@pytest.mark.issue(1971)
|
|
def test_issue1971(en_vocab):
|
|
# Possibly related to #2675 and #2671?
|
|
matcher = Matcher(en_vocab)
|
|
pattern = [
|
|
{"ORTH": "Doe"},
|
|
{"ORTH": "!", "OP": "?"},
|
|
{"_": {"optional": True}, "OP": "?"},
|
|
{"ORTH": "!", "OP": "?"},
|
|
]
|
|
Token.set_extension("optional", default=False)
|
|
matcher.add("TEST", [pattern])
|
|
doc = Doc(en_vocab, words=["Hello", "John", "Doe", "!"])
|
|
# We could also assert length 1 here, but this is more conclusive, because
|
|
# the real problem here is that it returns a duplicate match for a match_id
|
|
# that's not actually in the vocab!
|
|
matches = matcher(doc)
|
|
assert all([match_id in en_vocab.strings for match_id, start, end in matches])
|
|
|
|
|
|
@pytest.mark.issue(1971)
|
|
def test_issue_1971_2(en_vocab):
|
|
matcher = Matcher(en_vocab)
|
|
pattern1 = [{"ORTH": "EUR", "LOWER": {"IN": ["eur"]}}, {"LIKE_NUM": True}]
|
|
pattern2 = [{"LIKE_NUM": True}, {"ORTH": "EUR"}] # {"IN": ["EUR"]}}]
|
|
doc = Doc(en_vocab, words=["EUR", "10", "is", "10", "EUR"])
|
|
matcher.add("TEST1", [pattern1, pattern2])
|
|
matches = matcher(doc)
|
|
assert len(matches) == 2
|
|
|
|
|
|
@pytest.mark.issue(1971)
|
|
def test_issue_1971_3(en_vocab):
|
|
"""Test that pattern matches correctly for multiple extension attributes."""
|
|
Token.set_extension("a", default=1, force=True)
|
|
Token.set_extension("b", default=2, force=True)
|
|
doc = Doc(en_vocab, words=["hello", "world"])
|
|
matcher = Matcher(en_vocab)
|
|
matcher.add("A", [[{"_": {"a": 1}}]])
|
|
matcher.add("B", [[{"_": {"b": 2}}]])
|
|
matches = sorted((en_vocab.strings[m_id], s, e) for m_id, s, e in matcher(doc))
|
|
assert len(matches) == 4
|
|
assert matches == sorted([("A", 0, 1), ("A", 1, 2), ("B", 0, 1), ("B", 1, 2)])
|
|
|
|
|
|
@pytest.mark.issue(1971)
|
|
def test_issue_1971_4(en_vocab):
|
|
"""Test that pattern matches correctly with multiple extension attribute
|
|
values on a single token.
|
|
"""
|
|
Token.set_extension("ext_a", default="str_a", force=True)
|
|
Token.set_extension("ext_b", default="str_b", force=True)
|
|
matcher = Matcher(en_vocab)
|
|
doc = Doc(en_vocab, words=["this", "is", "text"])
|
|
pattern = [{"_": {"ext_a": "str_a", "ext_b": "str_b"}}] * 3
|
|
matcher.add("TEST", [pattern])
|
|
matches = matcher(doc)
|
|
# Uncommenting this caused a segmentation fault
|
|
assert len(matches) == 1
|
|
assert matches[0] == (en_vocab.strings["TEST"], 0, 3)
|
|
|
|
|
|
@pytest.mark.issue(2464)
|
|
def test_issue2464(en_vocab):
|
|
"""Test problem with successive ?. This is the same bug, so putting it here."""
|
|
matcher = Matcher(en_vocab)
|
|
doc = Doc(en_vocab, words=["a", "b"])
|
|
matcher.add("4", [[{"OP": "?"}, {"OP": "?"}]])
|
|
matches = matcher(doc)
|
|
assert len(matches) == 3
|
|
|
|
|
|
@pytest.mark.issue(2569)
|
|
def test_issue2569(en_tokenizer):
|
|
"""Test that operator + is greedy."""
|
|
doc = en_tokenizer("It is May 15, 1993.")
|
|
doc.ents = [Span(doc, 2, 6, label=doc.vocab.strings["DATE"])]
|
|
matcher = Matcher(doc.vocab)
|
|
matcher.add("RULE", [[{"ENT_TYPE": "DATE", "OP": "+"}]])
|
|
matched = [doc[start:end] for _, start, end in matcher(doc)]
|
|
matched = sorted(matched, key=len, reverse=True)
|
|
assert len(matched) == 10
|
|
assert len(matched[0]) == 4
|
|
assert matched[0].text == "May 15, 1993"
|
|
|
|
|
|
@pytest.mark.issue(2671)
|
|
def test_issue2671():
|
|
"""Ensure the correct entity ID is returned for matches with quantifiers.
|
|
See also #2675
|
|
"""
|
|
nlp = English()
|
|
matcher = Matcher(nlp.vocab)
|
|
pattern_id = "test_pattern"
|
|
pattern = [
|
|
{"LOWER": "high"},
|
|
{"IS_PUNCT": True, "OP": "?"},
|
|
{"LOWER": "adrenaline"},
|
|
]
|
|
matcher.add(pattern_id, [pattern])
|
|
doc1 = nlp("This is a high-adrenaline situation.")
|
|
doc2 = nlp("This is a high adrenaline situation.")
|
|
matches1 = matcher(doc1)
|
|
for match_id, start, end in matches1:
|
|
assert nlp.vocab.strings[match_id] == pattern_id
|
|
matches2 = matcher(doc2)
|
|
for match_id, start, end in matches2:
|
|
assert nlp.vocab.strings[match_id] == pattern_id
|
|
|
|
|
|
@pytest.mark.issue(3009)
|
|
def test_issue3009(en_vocab):
|
|
"""Test problem with matcher quantifiers"""
|
|
patterns = [
|
|
[{"ORTH": "has"}, {"LOWER": "to"}, {"LOWER": "do"}, {"TAG": "IN"}],
|
|
[
|
|
{"ORTH": "has"},
|
|
{"IS_ASCII": True, "IS_PUNCT": False, "OP": "*"},
|
|
{"LOWER": "to"},
|
|
{"LOWER": "do"},
|
|
{"TAG": "IN"},
|
|
],
|
|
[
|
|
{"ORTH": "has"},
|
|
{"IS_ASCII": True, "IS_PUNCT": False, "OP": "?"},
|
|
{"LOWER": "to"},
|
|
{"LOWER": "do"},
|
|
{"TAG": "IN"},
|
|
],
|
|
]
|
|
words = ["also", "has", "to", "do", "with"]
|
|
tags = ["RB", "VBZ", "TO", "VB", "IN"]
|
|
pos = ["ADV", "VERB", "ADP", "VERB", "ADP"]
|
|
doc = Doc(en_vocab, words=words, tags=tags, pos=pos)
|
|
matcher = Matcher(en_vocab)
|
|
for i, pattern in enumerate(patterns):
|
|
matcher.add(str(i), [pattern])
|
|
matches = matcher(doc)
|
|
assert matches
|
|
|
|
|
|
@pytest.mark.issue(3328)
|
|
def test_issue3328(en_vocab):
|
|
doc = Doc(en_vocab, words=["Hello", ",", "how", "are", "you", "doing", "?"])
|
|
matcher = Matcher(en_vocab)
|
|
patterns = [
|
|
[{"LOWER": {"IN": ["hello", "how"]}}],
|
|
[{"LOWER": {"IN": ["you", "doing"]}}],
|
|
]
|
|
matcher.add("TEST", patterns)
|
|
matches = matcher(doc)
|
|
assert len(matches) == 4
|
|
matched_texts = [doc[start:end].text for _, start, end in matches]
|
|
assert matched_texts == ["Hello", "how", "you", "doing"]
|
|
|
|
|
|
@pytest.mark.issue(3549)
|
|
def test_issue3549(en_vocab):
|
|
"""Test that match pattern validation doesn't raise on empty errors."""
|
|
matcher = Matcher(en_vocab, validate=True)
|
|
pattern = [{"LOWER": "hello"}, {"LOWER": "world"}]
|
|
matcher.add("GOOD", [pattern])
|
|
with pytest.raises(MatchPatternError):
|
|
matcher.add("BAD", [[{"X": "Y"}]])
|
|
|
|
|
|
@pytest.mark.skip("Matching currently only works on strings and integers")
|
|
@pytest.mark.issue(3555)
|
|
def test_issue3555(en_vocab):
|
|
"""Test that custom extensions with default None don't break matcher."""
|
|
Token.set_extension("issue3555", default=None)
|
|
matcher = Matcher(en_vocab)
|
|
pattern = [{"ORTH": "have"}, {"_": {"issue3555": True}}]
|
|
matcher.add("TEST", [pattern])
|
|
doc = Doc(en_vocab, words=["have", "apple"])
|
|
matcher(doc)
|
|
|
|
|
|
@pytest.mark.issue(3839)
|
|
def test_issue3839(en_vocab):
|
|
"""Test that match IDs returned by the matcher are correct, are in the string"""
|
|
doc = Doc(en_vocab, words=["terrific", "group", "of", "people"])
|
|
matcher = Matcher(en_vocab)
|
|
match_id = "PATTERN"
|
|
pattern1 = [{"LOWER": "terrific"}, {"OP": "?"}, {"LOWER": "group"}]
|
|
pattern2 = [{"LOWER": "terrific"}, {"OP": "?"}, {"OP": "?"}, {"LOWER": "group"}]
|
|
matcher.add(match_id, [pattern1])
|
|
matches = matcher(doc)
|
|
assert matches[0][0] == en_vocab.strings[match_id]
|
|
matcher = Matcher(en_vocab)
|
|
matcher.add(match_id, [pattern2])
|
|
matches = matcher(doc)
|
|
assert matches[0][0] == en_vocab.strings[match_id]
|
|
|
|
|
|
@pytest.mark.issue(3879)
|
|
def test_issue3879(en_vocab):
|
|
doc = Doc(en_vocab, words=["This", "is", "a", "test", "."])
|
|
assert len(doc) == 5
|
|
pattern = [{"ORTH": "This", "OP": "?"}, {"OP": "?"}, {"ORTH": "test"}]
|
|
matcher = Matcher(en_vocab)
|
|
matcher.add("TEST", [pattern])
|
|
assert len(matcher(doc)) == 2 # fails because of a FP match 'is a test'
|
|
|
|
|
|
@pytest.mark.issue(3951)
|
|
def test_issue3951(en_vocab):
|
|
"""Test that combinations of optional rules are matched correctly."""
|
|
matcher = Matcher(en_vocab)
|
|
pattern = [
|
|
{"LOWER": "hello"},
|
|
{"LOWER": "this", "OP": "?"},
|
|
{"OP": "?"},
|
|
{"LOWER": "world"},
|
|
]
|
|
matcher.add("TEST", [pattern])
|
|
doc = Doc(en_vocab, words=["Hello", "my", "new", "world"])
|
|
matches = matcher(doc)
|
|
assert len(matches) == 0
|
|
|
|
|
|
@pytest.mark.issue(4120)
|
|
def test_issue4120(en_vocab):
|
|
"""Test that matches without a final {OP: ?} token are returned."""
|
|
matcher = Matcher(en_vocab)
|
|
matcher.add("TEST", [[{"ORTH": "a"}, {"OP": "?"}]])
|
|
doc1 = Doc(en_vocab, words=["a"])
|
|
assert len(matcher(doc1)) == 1 # works
|
|
doc2 = Doc(en_vocab, words=["a", "b", "c"])
|
|
assert len(matcher(doc2)) == 2 # fixed
|
|
matcher = Matcher(en_vocab)
|
|
matcher.add("TEST", [[{"ORTH": "a"}, {"OP": "?"}, {"ORTH": "b"}]])
|
|
doc3 = Doc(en_vocab, words=["a", "b", "b", "c"])
|
|
assert len(matcher(doc3)) == 2 # works
|
|
matcher = Matcher(en_vocab)
|
|
matcher.add("TEST", [[{"ORTH": "a"}, {"OP": "?"}, {"ORTH": "b", "OP": "?"}]])
|
|
doc4 = Doc(en_vocab, words=["a", "b", "b", "c"])
|
|
assert len(matcher(doc4)) == 3 # fixed
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"pattern,re_pattern",
|
|
[
|
|
(pattern1, re_pattern1),
|
|
(pattern2, re_pattern2),
|
|
(pattern3, re_pattern3),
|
|
(pattern4, re_pattern4),
|
|
(pattern5, re_pattern5),
|
|
],
|
|
)
|
|
def test_greedy_matching_first(doc, text, pattern, re_pattern):
|
|
"""Test that the greedy matching behavior "FIRST" is consistent with
|
|
other re implementations."""
|
|
matcher = Matcher(doc.vocab)
|
|
matcher.add(re_pattern, [pattern], greedy="FIRST")
|
|
matches = matcher(doc)
|
|
re_matches = [m.span() for m in re.finditer(re_pattern, text)]
|
|
for (key, m_s, m_e), (re_s, re_e) in zip(matches, re_matches):
|
|
# matching the string, not the exact position
|
|
assert doc[m_s:m_e].text == doc[re_s:re_e].text
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"pattern,longest",
|
|
[
|
|
(pattern1, longest1),
|
|
(pattern2, longest2),
|
|
(pattern3, longest3),
|
|
(pattern4, longest4),
|
|
(pattern5, longest5),
|
|
],
|
|
)
|
|
def test_greedy_matching_longest(doc, text, pattern, longest):
|
|
"""Test the "LONGEST" greedy matching behavior"""
|
|
matcher = Matcher(doc.vocab)
|
|
matcher.add("RULE", [pattern], greedy="LONGEST")
|
|
matches = matcher(doc)
|
|
for (key, s, e) in matches:
|
|
assert doc[s:e].text == longest
|
|
|
|
|
|
def test_greedy_matching_longest_first(en_tokenizer):
|
|
"""Test that "LONGEST" matching prefers the first of two equally long matches"""
|
|
doc = en_tokenizer(" ".join("CCC"))
|
|
matcher = Matcher(doc.vocab)
|
|
pattern = [{"ORTH": "C"}, {"ORTH": "C"}]
|
|
matcher.add("RULE", [pattern], greedy="LONGEST")
|
|
matches = matcher(doc)
|
|
# out of 0-2 and 1-3, the first should be picked
|
|
assert len(matches) == 1
|
|
assert matches[0][1] == 0
|
|
assert matches[0][2] == 2
|
|
|
|
|
|
def test_invalid_greediness(doc, text):
|
|
matcher = Matcher(doc.vocab)
|
|
with pytest.raises(ValueError):
|
|
matcher.add("RULE", [pattern1], greedy="GREEDY")
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"pattern,re_pattern",
|
|
[
|
|
(pattern1, re_pattern1),
|
|
(pattern2, re_pattern2),
|
|
(pattern3, re_pattern3),
|
|
(pattern4, re_pattern4),
|
|
(pattern5, re_pattern5),
|
|
],
|
|
)
|
|
def test_match_consuming(doc, text, pattern, re_pattern):
|
|
"""Test that matcher.__call__ consumes tokens on a match similar to
|
|
re.findall."""
|
|
matcher = Matcher(doc.vocab)
|
|
matcher.add(re_pattern, [pattern], greedy="FIRST")
|
|
matches = matcher(doc)
|
|
re_matches = [m.span() for m in re.finditer(re_pattern, text)]
|
|
assert len(matches) == len(re_matches)
|
|
|
|
|
|
def test_operator_combos(en_vocab):
|
|
cases = [
|
|
("aaab", "a a a b", True),
|
|
("aaab", "a+ b", True),
|
|
("aaab", "a+ a+ b", True),
|
|
("aaab", "a+ a+ a b", True),
|
|
("aaab", "a+ a+ a+ b", True),
|
|
("aaab", "a+ a a b", True),
|
|
("aaab", "a+ a a", True),
|
|
("aaab", "a+", True),
|
|
("aaa", "a+ b", False),
|
|
("aaa", "a+ a+ b", False),
|
|
("aaa", "a+ a+ a+ b", False),
|
|
("aaa", "a+ a b", False),
|
|
("aaa", "a+ a a b", False),
|
|
("aaab", "a+ a a", True),
|
|
("aaab", "a+", True),
|
|
("aaab", "a+ a b", True),
|
|
]
|
|
for string, pattern_str, result in cases:
|
|
matcher = Matcher(en_vocab)
|
|
doc = Doc(matcher.vocab, words=list(string))
|
|
pattern = []
|
|
for part in pattern_str.split():
|
|
if part.endswith("+"):
|
|
pattern.append({"ORTH": part[0], "OP": "+"})
|
|
else:
|
|
pattern.append({"ORTH": part})
|
|
matcher.add("PATTERN", [pattern])
|
|
matches = matcher(doc)
|
|
if result:
|
|
assert matches, (string, pattern_str)
|
|
else:
|
|
assert not matches, (string, pattern_str)
|
|
|
|
|
|
@pytest.mark.issue(1450)
|
|
def test_matcher_end_zero_plus(en_vocab):
|
|
"""Test matcher works when patterns end with * operator. (issue 1450)"""
|
|
matcher = Matcher(en_vocab)
|
|
pattern = [{"ORTH": "a"}, {"ORTH": "b", "OP": "*"}]
|
|
matcher.add("TSTEND", [pattern])
|
|
nlp = lambda string: Doc(matcher.vocab, words=string.split())
|
|
assert len(matcher(nlp("a"))) == 1
|
|
assert len(matcher(nlp("a b"))) == 2
|
|
assert len(matcher(nlp("a c"))) == 1
|
|
assert len(matcher(nlp("a b c"))) == 2
|
|
assert len(matcher(nlp("a b b c"))) == 3
|
|
assert len(matcher(nlp("a b b"))) == 3
|
|
|
|
|
|
def test_matcher_sets_return_correct_tokens(en_vocab):
|
|
matcher = Matcher(en_vocab)
|
|
patterns = [
|
|
[{"LOWER": {"IN": ["zero"]}}],
|
|
[{"LOWER": {"IN": ["one"]}}],
|
|
[{"LOWER": {"IN": ["two"]}}],
|
|
]
|
|
matcher.add("TEST", patterns)
|
|
doc = Doc(en_vocab, words="zero one two three".split())
|
|
matches = matcher(doc)
|
|
texts = [Span(doc, s, e, label=L).text for L, s, e in matches]
|
|
assert texts == ["zero", "one", "two"]
|
|
|
|
|
|
@pytest.mark.filterwarnings("ignore:\\[W036")
|
|
def test_matcher_remove():
|
|
nlp = English()
|
|
matcher = Matcher(nlp.vocab)
|
|
text = "This is a test case."
|
|
|
|
pattern = [{"ORTH": "test"}, {"OP": "?"}]
|
|
assert len(matcher) == 0
|
|
matcher.add("Rule", [pattern])
|
|
assert "Rule" in matcher
|
|
|
|
# should give two matches
|
|
results1 = matcher(nlp(text))
|
|
assert len(results1) == 2
|
|
|
|
# removing once should work
|
|
matcher.remove("Rule")
|
|
|
|
# should not return any maches anymore
|
|
results2 = matcher(nlp(text))
|
|
assert len(results2) == 0
|
|
|
|
# removing again should throw an error
|
|
with pytest.raises(ValueError):
|
|
matcher.remove("Rule")
|
|
|
|
|
|
def test_matcher_with_alignments_greedy_longest(en_vocab):
|
|
cases = [
|
|
("aaab", "a* b", [0, 0, 0, 1]),
|
|
("baab", "b a* b", [0, 1, 1, 2]),
|
|
("aaab", "a a a b", [0, 1, 2, 3]),
|
|
("aaab", "a+ b", [0, 0, 0, 1]),
|
|
("aaba", "a+ b a+", [0, 0, 1, 2]),
|
|
("aabaa", "a+ b a+", [0, 0, 1, 2, 2]),
|
|
("aaba", "a+ b a*", [0, 0, 1, 2]),
|
|
("aaaa", "a*", [0, 0, 0, 0]),
|
|
("baab", "b a* b b*", [0, 1, 1, 2]),
|
|
("aabb", "a* b* a*", [0, 0, 1, 1]),
|
|
("aaab", "a+ a+ a b", [0, 1, 2, 3]),
|
|
("aaab", "a+ a+ a+ b", [0, 1, 2, 3]),
|
|
("aaab", "a+ a a b", [0, 1, 2, 3]),
|
|
("aaab", "a+ a a", [0, 1, 2]),
|
|
("aaab", "a+ a a?", [0, 1, 2]),
|
|
("aaaa", "a a a a a?", [0, 1, 2, 3]),
|
|
("aaab", "a+ a b", [0, 0, 1, 2]),
|
|
("aaab", "a+ a+ b", [0, 0, 1, 2]),
|
|
]
|
|
for string, pattern_str, result in cases:
|
|
matcher = Matcher(en_vocab)
|
|
doc = Doc(matcher.vocab, words=list(string))
|
|
pattern = []
|
|
for part in pattern_str.split():
|
|
if part.endswith("+"):
|
|
pattern.append({"ORTH": part[0], "OP": "+"})
|
|
elif part.endswith("*"):
|
|
pattern.append({"ORTH": part[0], "OP": "*"})
|
|
elif part.endswith("?"):
|
|
pattern.append({"ORTH": part[0], "OP": "?"})
|
|
else:
|
|
pattern.append({"ORTH": part})
|
|
matcher.add("PATTERN", [pattern], greedy="LONGEST")
|
|
matches = matcher(doc, with_alignments=True)
|
|
n_matches = len(matches)
|
|
|
|
_, s, e, expected = matches[0]
|
|
|
|
assert expected == result, (string, pattern_str, s, e, n_matches)
|
|
|
|
|
|
def test_matcher_with_alignments_nongreedy(en_vocab):
|
|
cases = [
|
|
(0, "aaab", "a* b", [[0, 1], [0, 0, 1], [0, 0, 0, 1], [1]]),
|
|
(1, "baab", "b a* b", [[0, 1, 1, 2]]),
|
|
(2, "aaab", "a a a b", [[0, 1, 2, 3]]),
|
|
(3, "aaab", "a+ b", [[0, 1], [0, 0, 1], [0, 0, 0, 1]]),
|
|
(4, "aaba", "a+ b a+", [[0, 1, 2], [0, 0, 1, 2]]),
|
|
(
|
|
5,
|
|
"aabaa",
|
|
"a+ b a+",
|
|
[[0, 1, 2], [0, 0, 1, 2], [0, 0, 1, 2, 2], [0, 1, 2, 2]],
|
|
),
|
|
(6, "aaba", "a+ b a*", [[0, 1], [0, 0, 1], [0, 0, 1, 2], [0, 1, 2]]),
|
|
(7, "aaaa", "a*", [[0], [0, 0], [0, 0, 0], [0, 0, 0, 0]]),
|
|
(8, "baab", "b a* b b*", [[0, 1, 1, 2]]),
|
|
(
|
|
9,
|
|
"aabb",
|
|
"a* b* a*",
|
|
[[1], [2], [2, 2], [0, 1], [0, 0, 1], [0, 0, 1, 1], [0, 1, 1], [1, 1]],
|
|
),
|
|
(10, "aaab", "a+ a+ a b", [[0, 1, 2, 3]]),
|
|
(11, "aaab", "a+ a+ a+ b", [[0, 1, 2, 3]]),
|
|
(12, "aaab", "a+ a a b", [[0, 1, 2, 3]]),
|
|
(13, "aaab", "a+ a a", [[0, 1, 2]]),
|
|
(14, "aaab", "a+ a a?", [[0, 1], [0, 1, 2]]),
|
|
(15, "aaaa", "a a a a a?", [[0, 1, 2, 3]]),
|
|
(16, "aaab", "a+ a b", [[0, 1, 2], [0, 0, 1, 2]]),
|
|
(17, "aaab", "a+ a+ b", [[0, 1, 2], [0, 0, 1, 2]]),
|
|
]
|
|
for case_id, string, pattern_str, results in cases:
|
|
matcher = Matcher(en_vocab)
|
|
doc = Doc(matcher.vocab, words=list(string))
|
|
pattern = []
|
|
for part in pattern_str.split():
|
|
if part.endswith("+"):
|
|
pattern.append({"ORTH": part[0], "OP": "+"})
|
|
elif part.endswith("*"):
|
|
pattern.append({"ORTH": part[0], "OP": "*"})
|
|
elif part.endswith("?"):
|
|
pattern.append({"ORTH": part[0], "OP": "?"})
|
|
else:
|
|
pattern.append({"ORTH": part})
|
|
|
|
matcher.add("PATTERN", [pattern])
|
|
matches = matcher(doc, with_alignments=True)
|
|
n_matches = len(matches)
|
|
|
|
for _, s, e, expected in matches:
|
|
assert expected in results, (case_id, string, pattern_str, s, e, n_matches)
|
|
assert len(expected) == e - s
|