mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	In most cases, the PhraseMatcher will match on the verbatim token text or as of v2.1, sometimes the lowercase text. This means that we only need a tokenized Doc, without any other attributes. If phrase patterns are created by processing large terminology lists with the full `nlp` object, this easily can make things a lot slower, because all components will be applied, even if we don't actually need the attributes they set (like part-of-speech tags, dependency labels). The warning message also includes a suggestion to use nlp.make_doc or nlp.tokenizer.pipe for even faster processing. For now, the validation has to be enabled explicitly by setting validate=True.
		
			
				
	
	
		
			102 lines
		
	
	
		
			3.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			102 lines
		
	
	
		
			3.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# coding: utf-8
 | 
						|
from __future__ import unicode_literals
 | 
						|
 | 
						|
import pytest
 | 
						|
from spacy.matcher import PhraseMatcher
 | 
						|
from spacy.tokens import Doc
 | 
						|
from ..util import get_doc
 | 
						|
 | 
						|
 | 
						|
def test_matcher_phrase_matcher(en_vocab):
 | 
						|
    doc = Doc(en_vocab, words=["Google", "Now"])
 | 
						|
    matcher = PhraseMatcher(en_vocab)
 | 
						|
    matcher.add("COMPANY", None, doc)
 | 
						|
    doc = Doc(en_vocab, words=["I", "like", "Google", "Now", "best"])
 | 
						|
    assert len(matcher(doc)) == 1
 | 
						|
 | 
						|
 | 
						|
def test_phrase_matcher_length(en_vocab):
 | 
						|
    matcher = PhraseMatcher(en_vocab)
 | 
						|
    assert len(matcher) == 0
 | 
						|
    matcher.add("TEST", None, Doc(en_vocab, words=["test"]))
 | 
						|
    assert len(matcher) == 1
 | 
						|
    matcher.add("TEST2", None, Doc(en_vocab, words=["test2"]))
 | 
						|
    assert len(matcher) == 2
 | 
						|
 | 
						|
 | 
						|
def test_phrase_matcher_contains(en_vocab):
 | 
						|
    matcher = PhraseMatcher(en_vocab)
 | 
						|
    matcher.add("TEST", None, Doc(en_vocab, words=["test"]))
 | 
						|
    assert "TEST" in matcher
 | 
						|
    assert "TEST2" not in matcher
 | 
						|
 | 
						|
 | 
						|
def test_phrase_matcher_string_attrs(en_vocab):
 | 
						|
    words1 = ["I", "like", "cats"]
 | 
						|
    pos1 = ["PRON", "VERB", "NOUN"]
 | 
						|
    words2 = ["Yes", ",", "you", "hate", "dogs", "very", "much"]
 | 
						|
    pos2 = ["INTJ", "PUNCT", "PRON", "VERB", "NOUN", "ADV", "ADV"]
 | 
						|
    pattern = get_doc(en_vocab, words=words1, pos=pos1)
 | 
						|
    matcher = PhraseMatcher(en_vocab, attr="POS")
 | 
						|
    matcher.add("TEST", None, pattern)
 | 
						|
    doc = get_doc(en_vocab, words=words2, pos=pos2)
 | 
						|
    matches = matcher(doc)
 | 
						|
    assert len(matches) == 1
 | 
						|
    match_id, start, end = matches[0]
 | 
						|
    assert match_id == en_vocab.strings["TEST"]
 | 
						|
    assert start == 2
 | 
						|
    assert end == 5
 | 
						|
 | 
						|
 | 
						|
def test_phrase_matcher_string_attrs_negative(en_vocab):
 | 
						|
    """Test that token with the control codes as ORTH are *not* matched."""
 | 
						|
    words1 = ["I", "like", "cats"]
 | 
						|
    pos1 = ["PRON", "VERB", "NOUN"]
 | 
						|
    words2 = ["matcher:POS-PRON", "matcher:POS-VERB", "matcher:POS-NOUN"]
 | 
						|
    pos2 = ["X", "X", "X"]
 | 
						|
    pattern = get_doc(en_vocab, words=words1, pos=pos1)
 | 
						|
    matcher = PhraseMatcher(en_vocab, attr="POS")
 | 
						|
    matcher.add("TEST", None, pattern)
 | 
						|
    doc = get_doc(en_vocab, words=words2, pos=pos2)
 | 
						|
    matches = matcher(doc)
 | 
						|
    assert len(matches) == 0
 | 
						|
 | 
						|
 | 
						|
def test_phrase_matcher_bool_attrs(en_vocab):
 | 
						|
    words1 = ["Hello", "world", "!"]
 | 
						|
    words2 = ["No", "problem", ",", "he", "said", "."]
 | 
						|
    pattern = Doc(en_vocab, words=words1)
 | 
						|
    matcher = PhraseMatcher(en_vocab, attr="IS_PUNCT")
 | 
						|
    matcher.add("TEST", None, pattern)
 | 
						|
    doc = Doc(en_vocab, words=words2)
 | 
						|
    matches = matcher(doc)
 | 
						|
    assert len(matches) == 2
 | 
						|
    match_id1, start1, end1 = matches[0]
 | 
						|
    match_id2, start2, end2 = matches[1]
 | 
						|
    assert match_id1 == en_vocab.strings["TEST"]
 | 
						|
    assert match_id2 == en_vocab.strings["TEST"]
 | 
						|
    assert start1 == 0
 | 
						|
    assert end1 == 3
 | 
						|
    assert start2 == 3
 | 
						|
    assert end2 == 6
 | 
						|
 | 
						|
 | 
						|
def test_phrase_matcher_validation(en_vocab):
 | 
						|
    doc1 = Doc(en_vocab, words=["Test"])
 | 
						|
    doc1.is_parsed = True
 | 
						|
    doc2 = Doc(en_vocab, words=["Test"])
 | 
						|
    doc2.is_tagged = True
 | 
						|
    doc3 = Doc(en_vocab, words=["Test"])
 | 
						|
    matcher = PhraseMatcher(en_vocab, validate=True)
 | 
						|
    with pytest.warns(UserWarning):
 | 
						|
        matcher.add("TEST1", None, doc1)
 | 
						|
    with pytest.warns(UserWarning):
 | 
						|
        matcher.add("TEST2", None, doc2)
 | 
						|
    with pytest.warns(None) as record:
 | 
						|
        matcher.add("TEST3", None, doc3)
 | 
						|
        assert not record.list
 | 
						|
    matcher = PhraseMatcher(en_vocab, attr="POS", validate=True)
 | 
						|
    with pytest.warns(None) as record:
 | 
						|
        matcher.add("TEST4", None, doc2)
 | 
						|
        assert not record.list
 |