mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			302 lines
		
	
	
		
			7.4 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			302 lines
		
	
	
		
			7.4 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
//- 💫 DOCS > API > LEXEME
 | 
						||
 | 
						||
include ../../_includes/_mixins
 | 
						||
 | 
						||
p
 | 
						||
    |  An entry in the vocabulary. A #[code Lexeme] has no string context – it's
 | 
						||
    |  a word type, as opposed to a word token. It therefore has no
 | 
						||
    |  part-of-speech tag, dependency parse, or lemma (if lemmatization depends
 | 
						||
    |  on the part-of-speech tag).
 | 
						||
 | 
						||
+h(2, "init") Lexeme.__init__
 | 
						||
    +tag method
 | 
						||
 | 
						||
p Create a #[code Lexeme] object.
 | 
						||
 | 
						||
+table(["Name", "Type", "Description"])
 | 
						||
    +row
 | 
						||
        +cell #[code vocab]
 | 
						||
        +cell #[code Vocab]
 | 
						||
        +cell The parent vocabulary.
 | 
						||
 | 
						||
    +row
 | 
						||
        +cell #[code orth]
 | 
						||
        +cell int
 | 
						||
        +cell The orth id of the lexeme.
 | 
						||
 | 
						||
    +footrow
 | 
						||
        +cell returns
 | 
						||
        +cell #[code Lexeme]
 | 
						||
        +cell The newly constructed object.
 | 
						||
 | 
						||
+h(2, "set_flag") Lexeme.set_flag
 | 
						||
    +tag method
 | 
						||
 | 
						||
p Change the value of a boolean flag.
 | 
						||
 | 
						||
+aside-code("Example").
 | 
						||
    COOL_FLAG = nlp.vocab.add_flag(lambda text: False)
 | 
						||
    nlp.vocab[u'spaCy'].set_flag(COOL_FLAG, True)
 | 
						||
 | 
						||
+table(["Name", "Type", "Description"])
 | 
						||
    +row
 | 
						||
        +cell #[code flag_id]
 | 
						||
        +cell int
 | 
						||
        +cell The attribute ID of the flag to set.
 | 
						||
 | 
						||
    +row
 | 
						||
        +cell #[code value]
 | 
						||
        +cell bool
 | 
						||
        +cell The new value of the flag.
 | 
						||
 | 
						||
+h(2, "check_flag") Lexeme.check_flag
 | 
						||
    +tag method
 | 
						||
 | 
						||
p Check the value of a boolean flag.
 | 
						||
 | 
						||
+aside-code("Example").
 | 
						||
    is_my_library = lambda text: text in ['spaCy', 'Thinc']
 | 
						||
    MY_LIBRARY = nlp.vocab.add_flag(is_my_library)
 | 
						||
    assert nlp.vocab[u'spaCy'].check_flag(MY_LIBRARY) == True
 | 
						||
 | 
						||
+table(["Name", "Type", "Description"])
 | 
						||
    +row
 | 
						||
        +cell #[code flag_id]
 | 
						||
        +cell int
 | 
						||
        +cell The attribute ID of the flag to query.
 | 
						||
 | 
						||
    +footrow
 | 
						||
        +cell returns
 | 
						||
        +cell bool
 | 
						||
        +cell The value of the flag.
 | 
						||
 | 
						||
+h(2, "similarity") Lexeme.similarity
 | 
						||
    +tag method
 | 
						||
    +tag-model("vectors")
 | 
						||
 | 
						||
p Compute a semantic similarity estimate. Defaults to cosine over vectors.
 | 
						||
 | 
						||
+aside-code("Example").
 | 
						||
    apple = nlp.vocab[u'apple']
 | 
						||
    orange = nlp.vocab[u'orange']
 | 
						||
    apple_orange = apple.similarity(orange)
 | 
						||
    orange_apple = orange.similarity(apple)
 | 
						||
    assert apple_orange == orange_apple
 | 
						||
 | 
						||
+table(["Name", "Type", "Description"])
 | 
						||
    +row
 | 
						||
        +cell other
 | 
						||
        +cell -
 | 
						||
        +cell
 | 
						||
            |  The object to compare with. By default, accepts #[code Doc],
 | 
						||
            |  #[code Span], #[code Token] and #[code Lexeme] objects.
 | 
						||
 | 
						||
    +footrow
 | 
						||
        +cell returns
 | 
						||
        +cell float
 | 
						||
        +cell A scalar similarity score. Higher is more similar.
 | 
						||
 | 
						||
 | 
						||
+h(2, "has_vector") Lexeme.has_vector
 | 
						||
    +tag property
 | 
						||
    +tag-model("vectors")
 | 
						||
 | 
						||
p
 | 
						||
    |  A boolean value indicating whether a word vector is associated with the
 | 
						||
    |  lexeme.
 | 
						||
 | 
						||
+aside-code("Example").
 | 
						||
    apple = nlp.vocab[u'apple']
 | 
						||
    assert apple.has_vector
 | 
						||
 | 
						||
+table(["Name", "Type", "Description"])
 | 
						||
    +footrow
 | 
						||
        +cell returns
 | 
						||
        +cell bool
 | 
						||
        +cell Whether the lexeme has a vector data attached.
 | 
						||
 | 
						||
+h(2, "vector") Lexeme.vector
 | 
						||
    +tag property
 | 
						||
    +tag-model("vectors")
 | 
						||
 | 
						||
p A real-valued meaning representation.
 | 
						||
 | 
						||
+aside-code("Example").
 | 
						||
    apple = nlp.vocab[u'apple']
 | 
						||
    assert apple.vector.dtype == 'float32'
 | 
						||
    assert apple.vector.shape == (300,)
 | 
						||
 | 
						||
+table(["Name", "Type", "Description"])
 | 
						||
    +footrow
 | 
						||
        +cell returns
 | 
						||
        +cell #[code numpy.ndarray[ndim=1, dtype='float32']]
 | 
						||
        +cell A 1D numpy array representing the lexeme's semantics.
 | 
						||
 | 
						||
+h(2, "vector_norm") Lexeme.vector_norm
 | 
						||
    +tag property
 | 
						||
    +tag-model("vectors")
 | 
						||
 | 
						||
p The L2 norm of the lexeme's vector representation.
 | 
						||
 | 
						||
+aside-code("Example").
 | 
						||
    apple = nlp.vocab[u'apple']
 | 
						||
    pasta = nlp.vocab[u'pasta']
 | 
						||
    apple.vector_norm # 7.1346845626831055
 | 
						||
    pasta.vector_norm # 7.759851932525635
 | 
						||
    assert apple.vector_norm != pasta.vector_norm
 | 
						||
 | 
						||
+table(["Name", "Type", "Description"])
 | 
						||
    +footrow
 | 
						||
        +cell returns
 | 
						||
        +cell float
 | 
						||
        +cell The L2 norm of the vector representation.
 | 
						||
 | 
						||
+h(2, "attributes") Attributes
 | 
						||
 | 
						||
+table(["Name", "Type", "Description"])
 | 
						||
    +row
 | 
						||
        +cell #[code vocab]
 | 
						||
        +cell #[code Vocab]
 | 
						||
        +cell
 | 
						||
 | 
						||
    +row
 | 
						||
        +cell #[code text]
 | 
						||
        +cell unicode
 | 
						||
        +cell Verbatim text content.
 | 
						||
 | 
						||
    +row
 | 
						||
        +cell #[code lex_id]
 | 
						||
        +cell int
 | 
						||
        +cell ID of the lexeme's lexical type.
 | 
						||
 | 
						||
    +row
 | 
						||
        +cell #[code lower]
 | 
						||
        +cell int
 | 
						||
        +cell Lower-case form of the word.
 | 
						||
 | 
						||
    +row
 | 
						||
        +cell #[code lower_]
 | 
						||
        +cell unicode
 | 
						||
        +cell Lower-case form of the word.
 | 
						||
 | 
						||
    +row
 | 
						||
        +cell #[code shape]
 | 
						||
        +cell int
 | 
						||
        +cell Transform of the word's string, to show orthographic features.
 | 
						||
 | 
						||
    +row
 | 
						||
        +cell #[code shape_]
 | 
						||
        +cell unicode
 | 
						||
        +cell Transform of the word's string, to show orthographic features.
 | 
						||
 | 
						||
    +row
 | 
						||
        +cell #[code prefix]
 | 
						||
        +cell int
 | 
						||
        +cell Length-N substring from the start of the word. Defaults to #[code N=1].
 | 
						||
 | 
						||
    +row
 | 
						||
        +cell #[code prefix_]
 | 
						||
        +cell unicode
 | 
						||
        +cell Length-N substring from the start of the word. Defaults to #[code N=1].
 | 
						||
 | 
						||
    +row
 | 
						||
        +cell #[code suffix]
 | 
						||
        +cell int
 | 
						||
        +cell Length-N substring from the end of the word. Defaults to #[code N=3].
 | 
						||
 | 
						||
    +row
 | 
						||
        +cell #[code suffix_]
 | 
						||
        +cell unicode
 | 
						||
        +cell Length-N substring from the start of the word. Defaults to #[code N=3].
 | 
						||
 | 
						||
    +row
 | 
						||
        +cell #[code is_alpha]
 | 
						||
        +cell bool
 | 
						||
        +cell
 | 
						||
            |  Does the lexeme consist of alphabetic characters? Equivalent to
 | 
						||
            |  #[code lexeme.text.isalpha()].
 | 
						||
 | 
						||
    +row
 | 
						||
        +cell #[code is_ascii]
 | 
						||
        +cell bool
 | 
						||
        +cell
 | 
						||
            |  Does the lexeme consist of ASCII characters? Equivalent to
 | 
						||
            |  #[code [any(ord(c) >= 128 for c in lexeme.text)]].
 | 
						||
 | 
						||
    +row
 | 
						||
        +cell #[code is_digit]
 | 
						||
        +cell bool
 | 
						||
        +cell
 | 
						||
            |  Does the lexeme consist of digits? Equivalent to
 | 
						||
            |  #[code lexeme.text.isdigit()].
 | 
						||
 | 
						||
    +row
 | 
						||
        +cell #[code is_lower]
 | 
						||
        +cell bool
 | 
						||
        +cell
 | 
						||
            |  Is the lexeme in lowercase? Equivalent to
 | 
						||
            |  #[code lexeme.text.islower()].
 | 
						||
 | 
						||
    +row
 | 
						||
        +cell #[code is_title]
 | 
						||
        +cell bool
 | 
						||
        +cell
 | 
						||
            |  Is the lexeme in titlecase? Equivalent to
 | 
						||
            |  #[code lexeme.text.istitle()].
 | 
						||
 | 
						||
    +row
 | 
						||
        +cell #[code is_punct]
 | 
						||
        +cell bool
 | 
						||
        +cell Is the lexeme punctuation?
 | 
						||
 | 
						||
    +row
 | 
						||
        +cell #[code is_space]
 | 
						||
        +cell bool
 | 
						||
        +cell
 | 
						||
            |  Does the lexeme consist of whitespace characters? Equivalent to
 | 
						||
            |  #[code lexeme.text.isspace()].
 | 
						||
 | 
						||
    +row
 | 
						||
        +cell #[code like_url]
 | 
						||
        +cell bool
 | 
						||
        +cell Does the lexeme resemble a URL?
 | 
						||
 | 
						||
    +row
 | 
						||
        +cell #[code like_num]
 | 
						||
        +cell bool
 | 
						||
        +cell Does the lexeme represent a number? e.g. "10.9", "10", "ten", etc.
 | 
						||
 | 
						||
    +row
 | 
						||
        +cell #[code like_email]
 | 
						||
        +cell bool
 | 
						||
        +cell Does the lexeme resemble an email address?
 | 
						||
 | 
						||
    +row
 | 
						||
        +cell #[code is_oov]
 | 
						||
        +cell bool
 | 
						||
        +cell Is the lexeme out-of-vocabulary?
 | 
						||
 | 
						||
    +row
 | 
						||
        +cell #[code is_stop]
 | 
						||
        +cell bool
 | 
						||
        +cell Is the lexeme part of a "stop list"?
 | 
						||
 | 
						||
    +row
 | 
						||
        +cell #[code lang]
 | 
						||
        +cell int
 | 
						||
        +cell Language of the parent vocabulary.
 | 
						||
    +row
 | 
						||
        +cell #[code lang_]
 | 
						||
        +cell unicode
 | 
						||
        +cell Language of the parent vocabulary.
 | 
						||
 | 
						||
    +row
 | 
						||
        +cell #[code prob]
 | 
						||
        +cell float
 | 
						||
        +cell Smoothed log probability estimate of lexeme's type.
 | 
						||
 | 
						||
    +row
 | 
						||
        +cell #[code sentiment]
 | 
						||
        +cell float
 | 
						||
        +cell A scalar value indicating the positivity or negativity of the lexeme.
 |