spaCy/spacy/ml/callbacks.py
Daniël de Kok 1f05f56433
Add the spacy.models_with_nvtx_range.v1 callback (#9124)
* Add the spacy.models_with_nvtx_range.v1 callback

This callback recursively adds NVTX ranges to the Models in each pipe in
a pipeline.

* Fix create_models_with_nvtx_range type signature

* NVTX range: wrap models of all trainable pipes jointly

This avoids that (sub-)models that are shared between pipes get wrapped
twice.

* NVTX range callback: make color configurable

Add forward_color and backprop_color options to set the color for the
NVTX range.

* Move create_models_with_nvtx_range to spacy.ml

* Update create_models_with_nvtx_range for thinc changes

with_nvtx_range now updates an existing node, rather than returning a
wrapper node. So, we can simply walk over the nodes and update them.

* NVTX: use after_pipeline_creation in example
2021-10-20 11:59:48 +02:00

38 lines
1.1 KiB
Python

from functools import partial
from typing import Type, Callable, TYPE_CHECKING
from thinc.layers import with_nvtx_range
from thinc.model import Model, wrap_model_recursive
from ..util import registry
if TYPE_CHECKING:
# This lets us add type hints for mypy etc. without causing circular imports
from ..language import Language # noqa: F401
@registry.callbacks("spacy.models_with_nvtx_range.v1")
def create_models_with_nvtx_range(
forward_color: int = -1, backprop_color: int = -1
) -> Callable[["Language"], "Language"]:
def models_with_nvtx_range(nlp):
pipes = [
pipe
for _, pipe in nlp.components
if hasattr(pipe, "is_trainable") and pipe.is_trainable
]
# We need process all models jointly to avoid wrapping callbacks twice.
models = Model(
"wrap_with_nvtx_range",
forward=lambda model, X, is_train: ...,
layers=[pipe.model for pipe in pipes],
)
for node in models.walk():
with_nvtx_range(node, forward_color=forward_color, backprop_color=backprop_color)
return nlp
return models_with_nvtx_range