mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-02 13:26:32 +03:00
108 lines
3.3 KiB
Python
108 lines
3.3 KiB
Python
from __future__ import unicode_literals
|
|
import pytest
|
|
|
|
from spacy.strings import StringStore
|
|
from spacy.matcher import *
|
|
from spacy.attrs import LOWER
|
|
from spacy.tokens.doc import Doc
|
|
from spacy.vocab import Vocab
|
|
from spacy.en import English
|
|
|
|
|
|
@pytest.fixture
|
|
def matcher():
|
|
patterns = {
|
|
'JS': ['PRODUCT', {}, [[{'ORTH': 'JavaScript'}]]],
|
|
'GoogleNow': ['PRODUCT', {}, [[{'ORTH': 'Google'}, {'ORTH': 'Now'}]]],
|
|
'Java': ['PRODUCT', {}, [[{'LOWER': 'java'}]]],
|
|
}
|
|
return Matcher(Vocab(lex_attr_getters=English.Defaults.lex_attr_getters), patterns)
|
|
|
|
|
|
def test_compile(matcher):
|
|
assert matcher.n_patterns == 3
|
|
|
|
|
|
def test_no_match(matcher):
|
|
doc = Doc(matcher.vocab, ['I', 'like', 'cheese', '.'])
|
|
assert matcher(doc) == []
|
|
|
|
|
|
def test_match_start(matcher):
|
|
doc = Doc(matcher.vocab, ['JavaScript', 'is', 'good'])
|
|
print([(t.text, t.orth) for t in doc])
|
|
assert matcher(doc) == [(matcher.vocab.strings['JS'],
|
|
matcher.vocab.strings['PRODUCT'], 0, 1)]
|
|
|
|
|
|
def test_match_end(matcher):
|
|
doc = Doc(matcher.vocab, ['I', 'like', 'java'])
|
|
assert matcher(doc) == [(doc.vocab.strings['Java'],
|
|
doc.vocab.strings['PRODUCT'], 2, 3)]
|
|
|
|
|
|
def test_match_middle(matcher):
|
|
doc = Doc(matcher.vocab, ['I', 'like', 'Google', 'Now', 'best'])
|
|
assert matcher(doc) == [(doc.vocab.strings['GoogleNow'],
|
|
doc.vocab.strings['PRODUCT'], 2, 4)]
|
|
|
|
|
|
def test_match_multi(matcher):
|
|
doc = Doc(matcher.vocab, 'I like Google Now and java best'.split())
|
|
assert matcher(doc) == [(doc.vocab.strings['GoogleNow'],
|
|
doc.vocab.strings['PRODUCT'], 2, 4),
|
|
(doc.vocab.strings['Java'],
|
|
doc.vocab.strings['PRODUCT'], 5, 6)]
|
|
|
|
def test_match_zero(matcher):
|
|
matcher.add('Quote', '', {}, [
|
|
[
|
|
{'ORTH': '"'},
|
|
{'OP': '!', 'IS_PUNCT': True},
|
|
{'OP': '!', 'IS_PUNCT': True},
|
|
{'ORTH': '"'}
|
|
]])
|
|
doc = Doc(matcher.vocab, 'He said , " some words " ...'.split())
|
|
assert len(matcher(doc)) == 1
|
|
doc = Doc(matcher.vocab, 'He said , " some three words " ...'.split())
|
|
assert len(matcher(doc)) == 0
|
|
matcher.add('Quote', '', {}, [
|
|
[
|
|
{'ORTH': '"'},
|
|
{'IS_PUNCT': True},
|
|
{'IS_PUNCT': True},
|
|
{'IS_PUNCT': True},
|
|
{'ORTH': '"'}
|
|
]])
|
|
assert len(matcher(doc)) == 0
|
|
|
|
|
|
def test_match_zero_plus(matcher):
|
|
matcher.add('Quote', '', {}, [
|
|
[
|
|
{'ORTH': '"'},
|
|
{'OP': '*', 'IS_PUNCT': False},
|
|
{'ORTH': '"'}
|
|
]])
|
|
doc = Doc(matcher.vocab, 'He said , " some words " ...'.split())
|
|
assert len(matcher(doc)) == 1
|
|
|
|
|
|
@pytest.mark.models
|
|
def test_match_preserved(EN):
|
|
patterns = {
|
|
'JS': ['PRODUCT', {}, [[{'ORTH': 'JavaScript'}]]],
|
|
'GoogleNow': ['PRODUCT', {}, [[{'ORTH': 'Google'}, {'ORTH': 'Now'}]]],
|
|
'Java': ['PRODUCT', {}, [[{'LOWER': 'java'}]]],
|
|
}
|
|
matcher = Matcher(EN.vocab, patterns)
|
|
doc = EN.tokenizer('I like java.')
|
|
EN.tagger(doc)
|
|
assert len(doc.ents) == 0
|
|
doc = EN.tokenizer('I like java.')
|
|
doc.ents += tuple(matcher(doc))
|
|
assert len(doc.ents) == 1
|
|
EN.tagger(doc)
|
|
EN.entity(doc)
|
|
assert len(doc.ents) == 1
|