mirror of
https://github.com/explosion/spaCy.git
synced 2024-11-15 22:27:12 +03:00
556 lines
20 KiB
Cython
556 lines
20 KiB
Cython
# cython: profile=True
|
|
# cython: infer_types=True
|
|
from __future__ import unicode_literals
|
|
|
|
from os import path
|
|
|
|
from .typedefs cimport attr_t
|
|
from .typedefs cimport hash_t
|
|
from .attrs cimport attr_id_t
|
|
from .structs cimport TokenC, LexemeC
|
|
from .lexeme cimport Lexeme
|
|
|
|
from cymem.cymem cimport Pool
|
|
from preshed.maps cimport PreshMap
|
|
from libcpp.vector cimport vector
|
|
from libcpp.pair cimport pair
|
|
from murmurhash.mrmr cimport hash64
|
|
from libc.stdint cimport int32_t
|
|
|
|
from .attrs cimport ID, LENGTH, ENT_TYPE, ORTH, NORM, LEMMA, LOWER, SHAPE
|
|
from . import attrs
|
|
from .tokens.doc cimport get_token_attr
|
|
from .tokens.doc cimport Doc
|
|
from .vocab cimport Vocab
|
|
|
|
from .attrs import FLAG61 as U_ENT
|
|
|
|
from .attrs import FLAG60 as B2_ENT
|
|
from .attrs import FLAG59 as B3_ENT
|
|
from .attrs import FLAG58 as B4_ENT
|
|
from .attrs import FLAG57 as B5_ENT
|
|
from .attrs import FLAG56 as B6_ENT
|
|
from .attrs import FLAG55 as B7_ENT
|
|
from .attrs import FLAG54 as B8_ENT
|
|
from .attrs import FLAG53 as B9_ENT
|
|
from .attrs import FLAG52 as B10_ENT
|
|
|
|
from .attrs import FLAG51 as I3_ENT
|
|
from .attrs import FLAG50 as I4_ENT
|
|
from .attrs import FLAG49 as I5_ENT
|
|
from .attrs import FLAG48 as I6_ENT
|
|
from .attrs import FLAG47 as I7_ENT
|
|
from .attrs import FLAG46 as I8_ENT
|
|
from .attrs import FLAG45 as I9_ENT
|
|
from .attrs import FLAG44 as I10_ENT
|
|
|
|
from .attrs import FLAG43 as L2_ENT
|
|
from .attrs import FLAG42 as L3_ENT
|
|
from .attrs import FLAG41 as L4_ENT
|
|
from .attrs import FLAG40 as L5_ENT
|
|
from .attrs import FLAG39 as L6_ENT
|
|
from .attrs import FLAG38 as L7_ENT
|
|
from .attrs import FLAG37 as L8_ENT
|
|
from .attrs import FLAG36 as L9_ENT
|
|
from .attrs import FLAG35 as L10_ENT
|
|
|
|
|
|
try:
|
|
import ujson as json
|
|
except ImportError:
|
|
import json
|
|
|
|
|
|
cpdef enum quantifier_t:
|
|
_META
|
|
ONE
|
|
ZERO
|
|
ZERO_ONE
|
|
ZERO_PLUS
|
|
|
|
|
|
cdef enum action_t:
|
|
REJECT
|
|
ADVANCE
|
|
REPEAT
|
|
ACCEPT
|
|
ADVANCE_ZERO
|
|
PANIC
|
|
|
|
|
|
cdef struct AttrValueC:
|
|
attr_id_t attr
|
|
attr_t value
|
|
|
|
|
|
cdef struct TokenPatternC:
|
|
AttrValueC* attrs
|
|
int32_t nr_attr
|
|
quantifier_t quantifier
|
|
|
|
|
|
ctypedef TokenPatternC* TokenPatternC_ptr
|
|
ctypedef pair[int, TokenPatternC_ptr] StateC
|
|
|
|
|
|
cdef TokenPatternC* init_pattern(Pool mem, attr_t entity_id, attr_t label,
|
|
object token_specs) except NULL:
|
|
pattern = <TokenPatternC*>mem.alloc(len(token_specs) + 1, sizeof(TokenPatternC))
|
|
cdef int i
|
|
for i, (quantifier, spec) in enumerate(token_specs):
|
|
pattern[i].quantifier = quantifier
|
|
pattern[i].attrs = <AttrValueC*>mem.alloc(len(spec), sizeof(AttrValueC))
|
|
pattern[i].nr_attr = len(spec)
|
|
for j, (attr, value) in enumerate(spec):
|
|
pattern[i].attrs[j].attr = attr
|
|
pattern[i].attrs[j].value = value
|
|
i = len(token_specs)
|
|
pattern[i].attrs = <AttrValueC*>mem.alloc(3, sizeof(AttrValueC))
|
|
pattern[i].attrs[0].attr = ID
|
|
pattern[i].attrs[0].value = entity_id
|
|
pattern[i].attrs[1].attr = ENT_TYPE
|
|
pattern[i].attrs[1].value = label
|
|
pattern[i].nr_attr = 0
|
|
return pattern
|
|
|
|
|
|
cdef int get_action(const TokenPatternC* pattern, const TokenC* token) nogil:
|
|
for attr in pattern.attrs[:pattern.nr_attr]:
|
|
if get_token_attr(token, attr.attr) != attr.value:
|
|
if pattern.quantifier == ONE:
|
|
return REJECT
|
|
elif pattern.quantifier == ZERO:
|
|
return ACCEPT if (pattern+1).nr_attr == 0 else ADVANCE
|
|
elif pattern.quantifier in (ZERO_ONE, ZERO_PLUS):
|
|
return ACCEPT if (pattern+1).nr_attr == 0 else ADVANCE_ZERO
|
|
else:
|
|
return PANIC
|
|
if pattern.quantifier == ZERO:
|
|
return REJECT
|
|
elif pattern.quantifier in (ONE, ZERO_ONE):
|
|
return ACCEPT if (pattern+1).nr_attr == 0 else ADVANCE
|
|
elif pattern.quantifier == ZERO_PLUS:
|
|
return REPEAT
|
|
else:
|
|
return PANIC
|
|
|
|
|
|
def _convert_strings(token_specs, string_store):
|
|
# Support 'syntactic sugar' operator '+', as combination of ONE, ZERO_PLUS
|
|
operators = {'!': (ZERO,), '*': (ZERO_PLUS,), '+': (ONE, ZERO_PLUS),
|
|
'?': (ZERO_ONE,), '1': (ONE,)}
|
|
tokens = []
|
|
op = ONE
|
|
for spec in token_specs:
|
|
token = []
|
|
ops = (ONE,)
|
|
for attr, value in spec.items():
|
|
if isinstance(attr, basestring) and attr.upper() == 'OP':
|
|
if value in operators:
|
|
ops = operators[value]
|
|
else:
|
|
raise KeyError(
|
|
"Unknown operator '%s'. Options: %s" % (value, ', '.join(operators.keys())))
|
|
if isinstance(attr, basestring):
|
|
attr = attrs.IDS.get(attr.upper())
|
|
if isinstance(value, basestring):
|
|
value = string_store[value]
|
|
if isinstance(value, bool):
|
|
value = int(value)
|
|
if attr is not None:
|
|
token.append((attr, value))
|
|
for op in ops:
|
|
tokens.append((op, token))
|
|
return tokens
|
|
|
|
|
|
cdef class Matcher:
|
|
'''Match sequences of tokens, based on pattern rules.'''
|
|
cdef Pool mem
|
|
cdef vector[TokenPatternC*] patterns
|
|
cdef readonly Vocab vocab
|
|
cdef public object _patterns
|
|
cdef public object _entities
|
|
cdef public object _callbacks
|
|
cdef public object _acceptors
|
|
|
|
@classmethod
|
|
def load(cls, path, vocab):
|
|
'''Load the matcher and patterns from a file path.
|
|
|
|
Arguments:
|
|
path (Path):
|
|
Path to a JSON-formatted patterns file.
|
|
vocab (Vocab):
|
|
The vocabulary that the documents to match over will refer to.
|
|
Returns:
|
|
Matcher: The newly constructed object.
|
|
'''
|
|
if (path / 'gazetteer.json').exists():
|
|
with (path / 'gazetteer.json').open('r', encoding='utf8') as file_:
|
|
patterns = json.load(file_)
|
|
else:
|
|
patterns = {}
|
|
return cls(vocab, patterns)
|
|
|
|
def __init__(self, vocab, patterns={}):
|
|
"""Create the Matcher.
|
|
|
|
Arguments:
|
|
vocab (Vocab):
|
|
The vocabulary object, which must be shared with the documents
|
|
the matcher will operate on.
|
|
patterns (dict): Patterns to add to the matcher.
|
|
Returns:
|
|
The newly constructed object.
|
|
"""
|
|
self._patterns = {}
|
|
self._entities = {}
|
|
self._acceptors = {}
|
|
self._callbacks = {}
|
|
self.vocab = vocab
|
|
self.mem = Pool()
|
|
for entity_key, (etype, attrs, specs) in sorted(patterns.items()):
|
|
self.add_entity(entity_key, attrs)
|
|
for spec in specs:
|
|
self.add_pattern(entity_key, spec, label=etype)
|
|
|
|
def __reduce__(self):
|
|
return (self.__class__, (self.vocab, self._patterns), None, None)
|
|
|
|
property n_patterns:
|
|
def __get__(self): return self.patterns.size()
|
|
|
|
def add_entity(self, entity_key, attrs=None, if_exists='raise',
|
|
acceptor=None, on_match=None):
|
|
"""Add an entity to the matcher.
|
|
|
|
Arguments:
|
|
entity_key (unicode or int):
|
|
An ID for the entity.
|
|
attrs:
|
|
Attributes to associate with the Matcher.
|
|
if_exists ('raise', 'ignore' or 'update'):
|
|
Controls what happens if the entity ID already exists. Defaults to 'raise'.
|
|
acceptor:
|
|
Callback function to filter matches of the entity.
|
|
on_match:
|
|
Callback function to act on matches of the entity.
|
|
Returns:
|
|
None
|
|
"""
|
|
if if_exists not in ('raise', 'ignore', 'update'):
|
|
raise ValueError(
|
|
"Unexpected value for if_exists: %s.\n"
|
|
"Expected one of: ['raise', 'ignore', 'update']" % if_exists)
|
|
if attrs is None:
|
|
attrs = {}
|
|
entity_key = self.normalize_entity_key(entity_key)
|
|
if self.has_entity(entity_key):
|
|
if if_exists == 'raise':
|
|
raise KeyError(
|
|
"Tried to add entity %s. Entity exists, and if_exists='raise'.\n"
|
|
"Set if_exists='ignore' or if_exists='update', or check with "
|
|
"matcher.has_entity()")
|
|
elif if_exists == 'ignore':
|
|
return
|
|
self._entities[entity_key] = dict(attrs)
|
|
self._patterns.setdefault(entity_key, [])
|
|
self._acceptors[entity_key] = acceptor
|
|
self._callbacks[entity_key] = on_match
|
|
|
|
def add_pattern(self, entity_key, token_specs, label=""):
|
|
"""Add a pattern to the matcher.
|
|
|
|
Arguments:
|
|
entity_key (unicode or int):
|
|
An ID for the entity.
|
|
token_specs:
|
|
Description of the pattern to be matched.
|
|
label:
|
|
Label to assign to the matched pattern. Defaults to "".
|
|
Returns:
|
|
None
|
|
"""
|
|
token_specs = list(token_specs)
|
|
if len(token_specs) == 0:
|
|
msg = ("Cannot add pattern for zero tokens to matcher.\n"
|
|
"entity_key: {entity_key}\n"
|
|
"label: {label}")
|
|
raise ValueError(msg.format(entity_key=entity_key, label=label))
|
|
entity_key = self.normalize_entity_key(entity_key)
|
|
if not self.has_entity(entity_key):
|
|
self.add_entity(entity_key)
|
|
if isinstance(label, basestring):
|
|
label = self.vocab.strings[label]
|
|
elif label is None:
|
|
label = 0
|
|
spec = _convert_strings(token_specs, self.vocab.strings)
|
|
|
|
self.patterns.push_back(init_pattern(self.mem, entity_key, label, spec))
|
|
self._patterns[entity_key].append((label, token_specs))
|
|
|
|
def add(self, entity_key, label, attrs, specs, acceptor=None, on_match=None):
|
|
self.add_entity(entity_key, attrs=attrs, if_exists='update',
|
|
acceptor=acceptor, on_match=on_match)
|
|
for spec in specs:
|
|
self.add_pattern(entity_key, spec, label=label)
|
|
|
|
def normalize_entity_key(self, entity_key):
|
|
if isinstance(entity_key, basestring):
|
|
return self.vocab.strings[entity_key]
|
|
else:
|
|
return entity_key
|
|
|
|
def has_entity(self, entity_key):
|
|
"""Check whether the matcher has an entity.
|
|
|
|
Arguments:
|
|
entity_key (string or int): The entity key to check.
|
|
Returns:
|
|
bool: Whether the matcher has the entity.
|
|
"""
|
|
entity_key = self.normalize_entity_key(entity_key)
|
|
return entity_key in self._entities
|
|
|
|
def get_entity(self, entity_key):
|
|
"""Retrieve the attributes stored for an entity.
|
|
|
|
Arguments:
|
|
entity_key (unicode or int): The entity to retrieve.
|
|
Returns:
|
|
The entity attributes if present, otherwise None.
|
|
"""
|
|
entity_key = self.normalize_entity_key(entity_key)
|
|
if entity_key in self._entities:
|
|
return self._entities[entity_key]
|
|
else:
|
|
return None
|
|
|
|
def __call__(self, Doc doc, acceptor=None):
|
|
"""Find all token sequences matching the supplied patterns on the Doc.
|
|
|
|
Arguments:
|
|
doc (Doc):
|
|
The document to match over.
|
|
Returns:
|
|
list
|
|
A list of (entity_key, label_id, start, end) tuples,
|
|
describing the matches. A match tuple describes a span doc[start:end].
|
|
The label_id and entity_key are both integers.
|
|
"""
|
|
if acceptor is not None:
|
|
raise ValueError(
|
|
"acceptor keyword argument to Matcher deprecated. Specify acceptor "
|
|
"functions when you add patterns instead.")
|
|
cdef vector[StateC] partials
|
|
cdef int n_partials = 0
|
|
cdef int q = 0
|
|
cdef int i, token_i
|
|
cdef const TokenC* token
|
|
cdef StateC state
|
|
matches = []
|
|
for token_i in range(doc.length):
|
|
token = &doc.c[token_i]
|
|
q = 0
|
|
# Go over the open matches, extending or finalizing if able. Otherwise,
|
|
# we over-write them (q doesn't advance)
|
|
for state in partials:
|
|
action = get_action(state.second, token)
|
|
if action == PANIC:
|
|
raise Exception("Error selecting action in matcher")
|
|
while action == ADVANCE_ZERO:
|
|
state.second += 1
|
|
action = get_action(state.second, token)
|
|
if action == REPEAT:
|
|
# Leave the state in the queue, and advance to next slot
|
|
# (i.e. we don't overwrite -- we want to greedily match more
|
|
# pattern.
|
|
q += 1
|
|
elif action == REJECT:
|
|
pass
|
|
elif action == ADVANCE:
|
|
partials[q] = state
|
|
partials[q].second += 1
|
|
q += 1
|
|
elif action == ACCEPT:
|
|
# TODO: What to do about patterns starting with ZERO? Need to
|
|
# adjust the start position.
|
|
start = state.first
|
|
end = token_i+1
|
|
ent_id = state.second[1].attrs[0].value
|
|
label = state.second[1].attrs[1].value
|
|
acceptor = self._acceptors.get(ent_id)
|
|
if acceptor is None:
|
|
matches.append((ent_id, label, start, end))
|
|
else:
|
|
match = acceptor(doc, ent_id, label, start, end)
|
|
if match:
|
|
matches.append(match)
|
|
partials.resize(q)
|
|
# Check whether we open any new patterns on this token
|
|
for pattern in self.patterns:
|
|
action = get_action(pattern, token)
|
|
if action == PANIC:
|
|
raise Exception("Error selecting action in matcher")
|
|
while action == ADVANCE_ZERO:
|
|
pattern += 1
|
|
action = get_action(pattern, token)
|
|
if action == REPEAT:
|
|
state.first = token_i
|
|
state.second = pattern
|
|
partials.push_back(state)
|
|
elif action == ADVANCE:
|
|
# TODO: What to do about patterns starting with ZERO? Need to
|
|
# adjust the start position.
|
|
state.first = token_i
|
|
state.second = pattern + 1
|
|
partials.push_back(state)
|
|
elif action == ACCEPT:
|
|
start = token_i
|
|
end = token_i+1
|
|
ent_id = pattern[1].attrs[0].value
|
|
label = pattern[1].attrs[1].value
|
|
acceptor = self._acceptors.get(ent_id)
|
|
if acceptor is None:
|
|
matches.append((ent_id, label, start, end))
|
|
else:
|
|
match = acceptor(doc, ent_id, label, start, end)
|
|
if match:
|
|
matches.append(match)
|
|
# Look for open patterns that are actually satisfied
|
|
for state in partials:
|
|
while state.second.quantifier in (ZERO, ZERO_PLUS):
|
|
state.second += 1
|
|
if state.second.nr_attr == 0:
|
|
start = state.first
|
|
end = len(doc)
|
|
ent_id = state.second.attrs[0].value
|
|
label = state.second.attrs[0].value
|
|
acceptor = self._acceptors.get(ent_id)
|
|
if acceptor is None:
|
|
matches.append((ent_id, label, start, end))
|
|
else:
|
|
match = acceptor(doc, ent_id, label, start, end)
|
|
if match:
|
|
matches.append(match)
|
|
for i, (ent_id, label, start, end) in enumerate(matches):
|
|
on_match = self._callbacks.get(ent_id)
|
|
if on_match is not None:
|
|
on_match(self, doc, i, matches)
|
|
return matches
|
|
|
|
def pipe(self, docs, batch_size=1000, n_threads=2):
|
|
"""Match a stream of documents, yielding them in turn.
|
|
|
|
Arguments:
|
|
docs: A stream of documents.
|
|
batch_size (int):
|
|
The number of documents to accumulate into a working set.
|
|
n_threads (int):
|
|
The number of threads with which to work on the buffer in parallel,
|
|
if the Matcher implementation supports multi-threading.
|
|
Yields:
|
|
Doc Documents, in order.
|
|
"""
|
|
for doc in docs:
|
|
self(doc)
|
|
yield doc
|
|
|
|
|
|
def get_bilou(length):
|
|
if length == 1:
|
|
return [U_ENT]
|
|
elif length == 2:
|
|
return [B2_ENT, L2_ENT]
|
|
elif length == 3:
|
|
return [B3_ENT, I3_ENT, L3_ENT]
|
|
elif length == 4:
|
|
return [B4_ENT, I4_ENT, I4_ENT, L4_ENT]
|
|
elif length == 5:
|
|
return [B5_ENT, I5_ENT, I5_ENT, I5_ENT, L5_ENT]
|
|
elif length == 6:
|
|
return [B6_ENT, I6_ENT, I6_ENT, I6_ENT, I6_ENT, L6_ENT]
|
|
elif length == 7:
|
|
return [B7_ENT, I7_ENT, I7_ENT, I7_ENT, I7_ENT, I7_ENT, L7_ENT]
|
|
elif length == 8:
|
|
return [B8_ENT, I8_ENT, I8_ENT, I8_ENT, I8_ENT, I8_ENT, I8_ENT, L8_ENT]
|
|
elif length == 9:
|
|
return [B9_ENT, I9_ENT, I9_ENT, I9_ENT, I9_ENT, I9_ENT, I9_ENT, I9_ENT, L9_ENT]
|
|
elif length == 10:
|
|
return [B10_ENT, I10_ENT, I10_ENT, I10_ENT, I10_ENT, I10_ENT, I10_ENT,
|
|
I10_ENT, I10_ENT, L10_ENT]
|
|
else:
|
|
raise ValueError("Max length currently 10 for phrase matching")
|
|
|
|
|
|
cdef class PhraseMatcher:
|
|
cdef Pool mem
|
|
cdef Vocab vocab
|
|
cdef Matcher matcher
|
|
cdef PreshMap phrase_ids
|
|
|
|
cdef int max_length
|
|
cdef attr_t* _phrase_key
|
|
|
|
def __init__(self, Vocab vocab, phrases, max_length=10):
|
|
self.mem = Pool()
|
|
self._phrase_key = <attr_t*>self.mem.alloc(max_length, sizeof(attr_t))
|
|
self.max_length = max_length
|
|
self.vocab = vocab
|
|
self.matcher = Matcher(self.vocab, {})
|
|
self.phrase_ids = PreshMap()
|
|
for phrase in phrases:
|
|
if len(phrase) < max_length:
|
|
self.add(phrase)
|
|
|
|
abstract_patterns = []
|
|
for length in range(1, max_length):
|
|
abstract_patterns.append([{tag: True} for tag in get_bilou(length)])
|
|
self.matcher.add('Candidate', 'MWE', {}, abstract_patterns, acceptor=self.accept_match)
|
|
|
|
def add(self, Doc tokens):
|
|
cdef int length = tokens.length
|
|
assert length < self.max_length
|
|
tags = get_bilou(length)
|
|
assert len(tags) == length, length
|
|
|
|
cdef int i
|
|
for i in range(self.max_length):
|
|
self._phrase_key[i] = 0
|
|
for i, tag in enumerate(tags):
|
|
lexeme = self.vocab[tokens.c[i].lex.orth]
|
|
lexeme.set_flag(tag, True)
|
|
self._phrase_key[i] = lexeme.orth
|
|
cdef hash_t key = hash64(self._phrase_key, self.max_length * sizeof(attr_t), 0)
|
|
self.phrase_ids[key] = True
|
|
|
|
def __call__(self, Doc doc):
|
|
matches = []
|
|
for ent_id, label, start, end in self.matcher(doc):
|
|
cand = doc[start : end]
|
|
start = cand[0].idx
|
|
end = cand[-1].idx + len(cand[-1])
|
|
matches.append((start, end, cand.root.tag_, cand.text, 'MWE'))
|
|
for match in matches:
|
|
doc.merge(*match)
|
|
return matches
|
|
|
|
def pipe(self, stream, batch_size=1000, n_threads=2):
|
|
for doc in stream:
|
|
self(doc)
|
|
yield doc
|
|
|
|
def accept_match(self, Doc doc, int ent_id, int label, int start, int end):
|
|
assert (end - start) < self.max_length
|
|
cdef int i, j
|
|
for i in range(self.max_length):
|
|
self._phrase_key[i] = 0
|
|
for i, j in enumerate(range(start, end)):
|
|
self._phrase_key[i] = doc.c[j].lex.orth
|
|
cdef hash_t key = hash64(self._phrase_key, self.max_length * sizeof(attr_t), 0)
|
|
if self.phrase_ids.get(key):
|
|
return (ent_id, label, start, end)
|
|
else:
|
|
return False
|