mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			428 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			428 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# coding: utf-8
 | 
						|
from __future__ import unicode_literals
 | 
						|
 | 
						|
import pytest
 | 
						|
from spacy.attrs import LEMMA
 | 
						|
from spacy.vocab import Vocab
 | 
						|
from spacy.tokens import Doc, Token
 | 
						|
 | 
						|
from ..util import get_doc
 | 
						|
 | 
						|
 | 
						|
def test_doc_retokenize_merge(en_tokenizer):
 | 
						|
    text = "WKRO played songs by the beach boys all night"
 | 
						|
    attrs = {"tag": "NAMED", "lemma": "LEMMA", "ent_type": "TYPE"}
 | 
						|
    doc = en_tokenizer(text)
 | 
						|
    assert len(doc) == 9
 | 
						|
    with doc.retokenize() as retokenizer:
 | 
						|
        retokenizer.merge(doc[4:7], attrs=attrs)
 | 
						|
        retokenizer.merge(doc[7:9], attrs=attrs)
 | 
						|
    assert len(doc) == 6
 | 
						|
    assert doc[4].text == "the beach boys"
 | 
						|
    assert doc[4].text_with_ws == "the beach boys "
 | 
						|
    assert doc[4].tag_ == "NAMED"
 | 
						|
    assert doc[5].text == "all night"
 | 
						|
    assert doc[5].text_with_ws == "all night"
 | 
						|
    assert doc[5].tag_ == "NAMED"
 | 
						|
 | 
						|
 | 
						|
def test_doc_retokenize_merge_children(en_tokenizer):
 | 
						|
    """Test that attachments work correctly after merging."""
 | 
						|
    text = "WKRO played songs by the beach boys all night"
 | 
						|
    attrs = {"tag": "NAMED", "lemma": "LEMMA", "ent_type": "TYPE"}
 | 
						|
    doc = en_tokenizer(text)
 | 
						|
    assert len(doc) == 9
 | 
						|
    with doc.retokenize() as retokenizer:
 | 
						|
        retokenizer.merge(doc[4:7], attrs=attrs)
 | 
						|
    for word in doc:
 | 
						|
        if word.i < word.head.i:
 | 
						|
            assert word in list(word.head.lefts)
 | 
						|
        elif word.i > word.head.i:
 | 
						|
            assert word in list(word.head.rights)
 | 
						|
 | 
						|
 | 
						|
def test_doc_retokenize_merge_hang(en_tokenizer):
 | 
						|
    text = "through North and South Carolina"
 | 
						|
    doc = en_tokenizer(text)
 | 
						|
    with doc.retokenize() as retokenizer:
 | 
						|
        retokenizer.merge(doc[3:5], attrs={"lemma": "", "ent_type": "ORG"})
 | 
						|
        retokenizer.merge(doc[1:2], attrs={"lemma": "", "ent_type": "ORG"})
 | 
						|
 | 
						|
 | 
						|
def test_doc_retokenize_retokenizer(en_tokenizer):
 | 
						|
    doc = en_tokenizer("WKRO played songs by the beach boys all night")
 | 
						|
    with doc.retokenize() as retokenizer:
 | 
						|
        retokenizer.merge(doc[4:7])
 | 
						|
    assert len(doc) == 7
 | 
						|
    assert doc[4].text == "the beach boys"
 | 
						|
 | 
						|
 | 
						|
def test_doc_retokenize_retokenizer_attrs(en_tokenizer):
 | 
						|
    doc = en_tokenizer("WKRO played songs by the beach boys all night")
 | 
						|
    # test both string and integer attributes and values
 | 
						|
    attrs = {LEMMA: "boys", "ENT_TYPE": doc.vocab.strings["ORG"]}
 | 
						|
    with doc.retokenize() as retokenizer:
 | 
						|
        retokenizer.merge(doc[4:7], attrs=attrs)
 | 
						|
    assert len(doc) == 7
 | 
						|
    assert doc[4].text == "the beach boys"
 | 
						|
    assert doc[4].lemma_ == "boys"
 | 
						|
    assert doc[4].ent_type_ == "ORG"
 | 
						|
 | 
						|
 | 
						|
def test_doc_retokenize_lex_attrs(en_tokenizer):
 | 
						|
    """Test that lexical attributes can be changed (see #2390)."""
 | 
						|
    doc = en_tokenizer("WKRO played beach boys songs")
 | 
						|
    assert not any(token.is_stop for token in doc)
 | 
						|
    with doc.retokenize() as retokenizer:
 | 
						|
        retokenizer.merge(doc[2:4], attrs={"LEMMA": "boys", "IS_STOP": True})
 | 
						|
    assert doc[2].text == "beach boys"
 | 
						|
    assert doc[2].lemma_ == "boys"
 | 
						|
    assert doc[2].is_stop
 | 
						|
    new_doc = Doc(doc.vocab, words=["beach boys"])
 | 
						|
    assert new_doc[0].is_stop
 | 
						|
 | 
						|
 | 
						|
def test_doc_retokenize_spans_merge_tokens(en_tokenizer):
 | 
						|
    text = "Los Angeles start."
 | 
						|
    heads = [1, 1, 0, -1]
 | 
						|
    tokens = en_tokenizer(text)
 | 
						|
    doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads)
 | 
						|
    assert len(doc) == 4
 | 
						|
    assert doc[0].head.text == "Angeles"
 | 
						|
    assert doc[1].head.text == "start"
 | 
						|
    with doc.retokenize() as retokenizer:
 | 
						|
        attrs = {"tag": "NNP", "lemma": "Los Angeles", "ent_type": "GPE"}
 | 
						|
        retokenizer.merge(doc[0:2], attrs=attrs)
 | 
						|
    assert len(doc) == 3
 | 
						|
    assert doc[0].text == "Los Angeles"
 | 
						|
    assert doc[0].head.text == "start"
 | 
						|
    assert doc[0].ent_type_ == "GPE"
 | 
						|
 | 
						|
 | 
						|
def test_doc_retokenize_spans_merge_tokens_default_attrs(en_tokenizer):
 | 
						|
    text = "The players start."
 | 
						|
    heads = [1, 1, 0, -1]
 | 
						|
    tokens = en_tokenizer(text)
 | 
						|
    doc = get_doc(
 | 
						|
        tokens.vocab,
 | 
						|
        words=[t.text for t in tokens],
 | 
						|
        tags=["DT", "NN", "VBZ", "."],
 | 
						|
        pos=["DET", "NOUN", "VERB", "PUNCT"],
 | 
						|
        heads=heads,
 | 
						|
    )
 | 
						|
    assert len(doc) == 4
 | 
						|
    assert doc[0].text == "The"
 | 
						|
    assert doc[0].tag_ == "DT"
 | 
						|
    assert doc[0].pos_ == "DET"
 | 
						|
    with doc.retokenize() as retokenizer:
 | 
						|
        retokenizer.merge(doc[0:2])
 | 
						|
    assert len(doc) == 3
 | 
						|
    assert doc[0].text == "The players"
 | 
						|
    assert doc[0].tag_ == "NN"
 | 
						|
    assert doc[0].pos_ == "NOUN"
 | 
						|
    assert doc[0].lemma_ == "The players"
 | 
						|
    doc = get_doc(
 | 
						|
        tokens.vocab,
 | 
						|
        words=[t.text for t in tokens],
 | 
						|
        tags=["DT", "NN", "VBZ", "."],
 | 
						|
        pos=["DET", "NOUN", "VERB", "PUNCT"],
 | 
						|
        heads=heads,
 | 
						|
    )
 | 
						|
    assert len(doc) == 4
 | 
						|
    assert doc[0].text == "The"
 | 
						|
    assert doc[0].tag_ == "DT"
 | 
						|
    assert doc[0].pos_ == "DET"
 | 
						|
    with doc.retokenize() as retokenizer:
 | 
						|
        retokenizer.merge(doc[0:2])
 | 
						|
        retokenizer.merge(doc[2:4])
 | 
						|
    assert len(doc) == 2
 | 
						|
    assert doc[0].text == "The players"
 | 
						|
    assert doc[0].tag_ == "NN"
 | 
						|
    assert doc[0].pos_ == "NOUN"
 | 
						|
    assert doc[0].lemma_ == "The players"
 | 
						|
    assert doc[1].text == "start ."
 | 
						|
    assert doc[1].tag_ == "VBZ"
 | 
						|
    assert doc[1].pos_ == "VERB"
 | 
						|
    assert doc[1].lemma_ == "start ."
 | 
						|
 | 
						|
 | 
						|
def test_doc_retokenize_spans_merge_heads(en_tokenizer):
 | 
						|
    text = "I found a pilates class near work."
 | 
						|
    heads = [1, 0, 2, 1, -3, -1, -1, -6]
 | 
						|
    tokens = en_tokenizer(text)
 | 
						|
    doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads)
 | 
						|
    assert len(doc) == 8
 | 
						|
    with doc.retokenize() as retokenizer:
 | 
						|
        attrs = {"tag": doc[4].tag_, "lemma": "pilates class", "ent_type": "O"}
 | 
						|
        retokenizer.merge(doc[3:5], attrs=attrs)
 | 
						|
    assert len(doc) == 7
 | 
						|
    assert doc[0].head.i == 1
 | 
						|
    assert doc[1].head.i == 1
 | 
						|
    assert doc[2].head.i == 3
 | 
						|
    assert doc[3].head.i == 1
 | 
						|
    assert doc[4].head.i in [1, 3]
 | 
						|
    assert doc[5].head.i == 4
 | 
						|
 | 
						|
 | 
						|
def test_doc_retokenize_spans_merge_non_disjoint(en_tokenizer):
 | 
						|
    text = "Los Angeles start."
 | 
						|
    doc = en_tokenizer(text)
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        with doc.retokenize() as retokenizer:
 | 
						|
            retokenizer.merge(
 | 
						|
                doc[0:2],
 | 
						|
                attrs={"tag": "NNP", "lemma": "Los Angeles", "ent_type": "GPE"},
 | 
						|
            )
 | 
						|
            retokenizer.merge(
 | 
						|
                doc[0:1],
 | 
						|
                attrs={"tag": "NNP", "lemma": "Los Angeles", "ent_type": "GPE"},
 | 
						|
            )
 | 
						|
 | 
						|
 | 
						|
def test_doc_retokenize_span_np_merges(en_tokenizer):
 | 
						|
    text = "displaCy is a parse tool built with Javascript"
 | 
						|
    heads = [1, 0, 2, 1, -3, -1, -1, -1]
 | 
						|
    tokens = en_tokenizer(text)
 | 
						|
    doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads)
 | 
						|
    assert doc[4].head.i == 1
 | 
						|
    with doc.retokenize() as retokenizer:
 | 
						|
        attrs = {"tag": "NP", "lemma": "tool", "ent_type": "O"}
 | 
						|
        retokenizer.merge(doc[2:5], attrs=attrs)
 | 
						|
    assert doc[2].head.i == 1
 | 
						|
 | 
						|
    text = "displaCy is a lightweight and modern dependency parse tree visualization tool built with CSS3 and JavaScript."
 | 
						|
    heads = [1, 0, 8, 3, -1, -2, 4, 3, 1, 1, -9, -1, -1, -1, -1, -2, -15]
 | 
						|
    tokens = en_tokenizer(text)
 | 
						|
    doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads)
 | 
						|
    with doc.retokenize() as retokenizer:
 | 
						|
        for ent in doc.ents:
 | 
						|
            attrs = {"tag": ent.label_, "lemma": ent.lemma_, "ent_type": ent.label_}
 | 
						|
            retokenizer.merge(ent, attrs=attrs)
 | 
						|
 | 
						|
    text = "One test with entities like New York City so the ents list is not void"
 | 
						|
    heads = [1, 11, -1, -1, -1, 1, 1, -3, 4, 2, 1, 1, 0, -1, -2]
 | 
						|
    tokens = en_tokenizer(text)
 | 
						|
    doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads)
 | 
						|
    with doc.retokenize() as retokenizer:
 | 
						|
        for ent in doc.ents:
 | 
						|
            retokenizer.merge(ent)
 | 
						|
 | 
						|
 | 
						|
def test_doc_retokenize_spans_entity_merge(en_tokenizer):
 | 
						|
    # fmt: off
 | 
						|
    text = "Stewart Lee is a stand up comedian who lives in England and loves Joe Pasquale.\n"
 | 
						|
    heads = [1, 1, 0, 1, 2, -1, -4, 1, -2, -1, -1, -3, -10, 1, -2, -13, -1]
 | 
						|
    tags = ["NNP", "NNP", "VBZ", "DT", "VB", "RP", "NN", "WP", "VBZ", "IN", "NNP", "CC", "VBZ", "NNP", "NNP", ".", "SP"]
 | 
						|
    ents = [(0, 2, "PERSON"), (10, 11, "GPE"), (13, 15, "PERSON")]
 | 
						|
    # fmt: on
 | 
						|
    tokens = en_tokenizer(text)
 | 
						|
    doc = get_doc(
 | 
						|
        tokens.vocab, words=[t.text for t in tokens], heads=heads, tags=tags, ents=ents
 | 
						|
    )
 | 
						|
    assert len(doc) == 17
 | 
						|
    with doc.retokenize() as retokenizer:
 | 
						|
        for ent in doc.ents:
 | 
						|
            ent_type = max(w.ent_type_ for w in ent)
 | 
						|
            attrs = {"lemma": ent.root.lemma_, "ent_type": ent_type}
 | 
						|
            retokenizer.merge(ent, attrs=attrs)
 | 
						|
    # check looping is ok
 | 
						|
    assert len(doc) == 15
 | 
						|
 | 
						|
 | 
						|
def test_doc_retokenize_spans_entity_merge_iob(en_vocab):
 | 
						|
    # Test entity IOB stays consistent after merging
 | 
						|
    words = ["a", "b", "c", "d", "e"]
 | 
						|
    doc = Doc(Vocab(), words=words)
 | 
						|
    doc.ents = [
 | 
						|
        (doc.vocab.strings.add("ent-abc"), 0, 3),
 | 
						|
        (doc.vocab.strings.add("ent-d"), 3, 4),
 | 
						|
    ]
 | 
						|
    assert doc[0].ent_iob_ == "B"
 | 
						|
    assert doc[1].ent_iob_ == "I"
 | 
						|
    assert doc[2].ent_iob_ == "I"
 | 
						|
    assert doc[3].ent_iob_ == "B"
 | 
						|
    with doc.retokenize() as retokenizer:
 | 
						|
        retokenizer.merge(doc[0:2])
 | 
						|
    assert len(doc) == len(words) - 1
 | 
						|
    assert doc[0].ent_iob_ == "B"
 | 
						|
    assert doc[1].ent_iob_ == "I"
 | 
						|
 | 
						|
    # Test that IOB stays consistent with provided IOB
 | 
						|
    words = ["a", "b", "c", "d", "e"]
 | 
						|
    doc = Doc(Vocab(), words=words)
 | 
						|
    with doc.retokenize() as retokenizer:
 | 
						|
        attrs = {"ent_type": "ent-abc", "ent_iob": 1}
 | 
						|
        retokenizer.merge(doc[0:3], attrs=attrs)
 | 
						|
        retokenizer.merge(doc[3:5], attrs=attrs)
 | 
						|
    assert doc[0].ent_iob_ == "B"
 | 
						|
    assert doc[1].ent_iob_ == "I"
 | 
						|
 | 
						|
    # if no parse/heads, the first word in the span is the root and provides
 | 
						|
    # default values
 | 
						|
    words = ["a", "b", "c", "d", "e", "f", "g", "h", "i"]
 | 
						|
    doc = Doc(Vocab(), words=words)
 | 
						|
    doc.ents = [
 | 
						|
        (doc.vocab.strings.add("ent-de"), 3, 5),
 | 
						|
        (doc.vocab.strings.add("ent-fg"), 5, 7),
 | 
						|
    ]
 | 
						|
    assert doc[3].ent_iob_ == "B"
 | 
						|
    assert doc[4].ent_iob_ == "I"
 | 
						|
    assert doc[5].ent_iob_ == "B"
 | 
						|
    assert doc[6].ent_iob_ == "I"
 | 
						|
    with doc.retokenize() as retokenizer:
 | 
						|
        retokenizer.merge(doc[2:4])
 | 
						|
        retokenizer.merge(doc[4:6])
 | 
						|
        retokenizer.merge(doc[7:9])
 | 
						|
    assert len(doc) == 6
 | 
						|
    assert doc[3].ent_iob_ == "B"
 | 
						|
    assert doc[3].ent_type_ == "ent-de"
 | 
						|
    assert doc[4].ent_iob_ == "B"
 | 
						|
    assert doc[4].ent_type_ == "ent-fg"
 | 
						|
 | 
						|
    # if there is a parse, span.root provides default values
 | 
						|
    words = ["a", "b", "c", "d", "e", "f", "g", "h", "i"]
 | 
						|
    heads = [0, -1, 1, -3, -4, -5, -1, -7, -8]
 | 
						|
    ents = [(3, 5, "ent-de"), (5, 7, "ent-fg")]
 | 
						|
    deps = ["dep"] * len(words)
 | 
						|
    en_vocab.strings.add("ent-de")
 | 
						|
    en_vocab.strings.add("ent-fg")
 | 
						|
    en_vocab.strings.add("dep")
 | 
						|
    doc = get_doc(en_vocab, words=words, heads=heads, deps=deps, ents=ents)
 | 
						|
    assert doc[2:4].root == doc[3]  # root of 'c d' is d
 | 
						|
    assert doc[4:6].root == doc[4]  # root is 'e f' is e
 | 
						|
    with doc.retokenize() as retokenizer:
 | 
						|
        retokenizer.merge(doc[2:4])
 | 
						|
        retokenizer.merge(doc[4:6])
 | 
						|
        retokenizer.merge(doc[7:9])
 | 
						|
    assert len(doc) == 6
 | 
						|
    assert doc[2].ent_iob_ == "B"
 | 
						|
    assert doc[2].ent_type_ == "ent-de"
 | 
						|
    assert doc[3].ent_iob_ == "I"
 | 
						|
    assert doc[3].ent_type_ == "ent-de"
 | 
						|
    assert doc[4].ent_iob_ == "B"
 | 
						|
    assert doc[4].ent_type_ == "ent-fg"
 | 
						|
 | 
						|
    # check that B is preserved if span[start] is B
 | 
						|
    words = ["a", "b", "c", "d", "e", "f", "g", "h", "i"]
 | 
						|
    heads = [0, -1, 1, 1, -4, -5, -1, -7, -8]
 | 
						|
    ents = [(3, 5, "ent-de"), (5, 7, "ent-de")]
 | 
						|
    deps = ["dep"] * len(words)
 | 
						|
    doc = get_doc(en_vocab, words=words, heads=heads, deps=deps, ents=ents)
 | 
						|
    with doc.retokenize() as retokenizer:
 | 
						|
        retokenizer.merge(doc[3:5])
 | 
						|
        retokenizer.merge(doc[5:7])
 | 
						|
    assert len(doc) == 7
 | 
						|
    assert doc[3].ent_iob_ == "B"
 | 
						|
    assert doc[3].ent_type_ == "ent-de"
 | 
						|
    assert doc[4].ent_iob_ == "B"
 | 
						|
    assert doc[4].ent_type_ == "ent-de"
 | 
						|
 | 
						|
 | 
						|
def test_doc_retokenize_spans_sentence_update_after_merge(en_tokenizer):
 | 
						|
    # fmt: off
 | 
						|
    text = "Stewart Lee is a stand up comedian. He lives in England and loves Joe Pasquale."
 | 
						|
    heads = [1, 1, 0, 1, 2, -1, -4, -5, 1, 0, -1, -1, -3, -4, 1, -2, -7]
 | 
						|
    deps = ['compound', 'nsubj', 'ROOT', 'det', 'amod', 'prt', 'attr',
 | 
						|
            'punct', 'nsubj', 'ROOT', 'prep', 'pobj', 'cc', 'conj',
 | 
						|
            'compound', 'dobj', 'punct']
 | 
						|
    # fmt: on
 | 
						|
    tokens = en_tokenizer(text)
 | 
						|
    doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps)
 | 
						|
    sent1, sent2 = list(doc.sents)
 | 
						|
    init_len = len(sent1)
 | 
						|
    init_len2 = len(sent2)
 | 
						|
    with doc.retokenize() as retokenizer:
 | 
						|
        attrs = {"lemma": "none", "ent_type": "none"}
 | 
						|
        retokenizer.merge(doc[0:2], attrs=attrs)
 | 
						|
        retokenizer.merge(doc[-2:], attrs=attrs)
 | 
						|
    assert len(sent1) == init_len - 1
 | 
						|
    assert len(sent2) == init_len2 - 1
 | 
						|
 | 
						|
 | 
						|
def test_doc_retokenize_spans_subtree_size_check(en_tokenizer):
 | 
						|
    # fmt: off
 | 
						|
    text = "Stewart Lee is a stand up comedian who lives in England and loves Joe Pasquale"
 | 
						|
    heads = [1, 1, 0, 1, 2, -1, -4, 1, -2, -1, -1, -3, -10, 1, -2]
 | 
						|
    deps = ["compound", "nsubj", "ROOT", "det", "amod", "prt", "attr",
 | 
						|
            "nsubj", "relcl", "prep", "pobj", "cc", "conj", "compound",
 | 
						|
            "dobj"]
 | 
						|
    # fmt: on
 | 
						|
    tokens = en_tokenizer(text)
 | 
						|
    doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps)
 | 
						|
    sent1 = list(doc.sents)[0]
 | 
						|
    init_len = len(list(sent1.root.subtree))
 | 
						|
    with doc.retokenize() as retokenizer:
 | 
						|
        attrs = {"lemma": "none", "ent_type": "none"}
 | 
						|
        retokenizer.merge(doc[0:2], attrs=attrs)
 | 
						|
    assert len(list(sent1.root.subtree)) == init_len - 1
 | 
						|
 | 
						|
 | 
						|
def test_doc_retokenize_merge_extension_attrs(en_vocab):
 | 
						|
    Token.set_extension("a", default=False, force=True)
 | 
						|
    Token.set_extension("b", default="nothing", force=True)
 | 
						|
    doc = Doc(en_vocab, words=["hello", "world", "!"])
 | 
						|
    # Test regular merging
 | 
						|
    with doc.retokenize() as retokenizer:
 | 
						|
        attrs = {"lemma": "hello world", "_": {"a": True, "b": "1"}}
 | 
						|
        retokenizer.merge(doc[0:2], attrs=attrs)
 | 
						|
    assert doc[0].lemma_ == "hello world"
 | 
						|
    assert doc[0]._.a is True
 | 
						|
    assert doc[0]._.b == "1"
 | 
						|
    # Test bulk merging
 | 
						|
    doc = Doc(en_vocab, words=["hello", "world", "!", "!"])
 | 
						|
    with doc.retokenize() as retokenizer:
 | 
						|
        retokenizer.merge(doc[0:2], attrs={"_": {"a": True, "b": "1"}})
 | 
						|
        retokenizer.merge(doc[2:4], attrs={"_": {"a": None, "b": "2"}})
 | 
						|
    assert doc[0]._.a is True
 | 
						|
    assert doc[0]._.b == "1"
 | 
						|
    assert doc[1]._.a is None
 | 
						|
    assert doc[1]._.b == "2"
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("underscore_attrs", [{"a": "x"}, {"b": "x"}, {"c": "x"}, [1]])
 | 
						|
def test_doc_retokenize_merge_extension_attrs_invalid(en_vocab, underscore_attrs):
 | 
						|
    Token.set_extension("a", getter=lambda x: x, force=True)
 | 
						|
    Token.set_extension("b", method=lambda x: x, force=True)
 | 
						|
    doc = Doc(en_vocab, words=["hello", "world", "!"])
 | 
						|
    attrs = {"_": underscore_attrs}
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        with doc.retokenize() as retokenizer:
 | 
						|
            retokenizer.merge(doc[0:2], attrs=attrs)
 | 
						|
 | 
						|
 | 
						|
def test_doc_retokenizer_merge_lex_attrs(en_vocab):
 | 
						|
    """Test that retokenization also sets attributes on the lexeme if they're
 | 
						|
    lexical attributes. For example, if a user sets IS_STOP, it should mean that
 | 
						|
    "all tokens with that lexeme" are marked as a stop word, so the ambiguity
 | 
						|
    here is acceptable. Also see #2390.
 | 
						|
    """
 | 
						|
    # Test regular merging
 | 
						|
    doc = Doc(en_vocab, words=["hello", "world", "!"])
 | 
						|
    assert not any(t.is_stop for t in doc)
 | 
						|
    with doc.retokenize() as retokenizer:
 | 
						|
        retokenizer.merge(doc[0:2], attrs={"lemma": "hello world", "is_stop": True})
 | 
						|
    assert doc[0].lemma_ == "hello world"
 | 
						|
    assert doc[0].is_stop
 | 
						|
    # Test bulk merging
 | 
						|
    doc = Doc(en_vocab, words=["eins", "zwei", "!", "!"])
 | 
						|
    assert not any(t.like_num for t in doc)
 | 
						|
    assert not any(t.is_stop for t in doc)
 | 
						|
    with doc.retokenize() as retokenizer:
 | 
						|
        retokenizer.merge(doc[0:2], attrs={"like_num": True})
 | 
						|
        retokenizer.merge(doc[2:4], attrs={"is_stop": True})
 | 
						|
    assert doc[0].like_num
 | 
						|
    assert doc[1].is_stop
 | 
						|
    assert not doc[0].is_stop
 | 
						|
    assert not doc[1].like_num
 | 
						|
 | 
						|
 | 
						|
def test_retokenize_skip_duplicates(en_vocab):
 | 
						|
    """Test that the retokenizer automatically skips duplicate spans instead
 | 
						|
    of complaining about overlaps. See #3687."""
 | 
						|
    doc = Doc(en_vocab, words=["hello", "world", "!"])
 | 
						|
    with doc.retokenize() as retokenizer:
 | 
						|
        retokenizer.merge(doc[0:2])
 | 
						|
        retokenizer.merge(doc[0:2])
 | 
						|
    assert len(doc) == 2
 | 
						|
    assert doc[0].text == "hello world"
 |