mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-30 15:37:29 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			111 lines
		
	
	
		
			3.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			111 lines
		
	
	
		
			3.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| #!/usr/bin/env python
 | |
| # coding: utf8
 | |
| """Example of training spaCy dependency parser, starting off with an existing
 | |
| model or a blank model. For more details, see the documentation:
 | |
| * Training: https://spacy.io/usage/training
 | |
| * Dependency Parse: https://spacy.io/usage/linguistic-features#dependency-parse
 | |
| 
 | |
| Compatible with: spaCy v2.0.0+
 | |
| Last tested with: v2.1.0
 | |
| """
 | |
| from __future__ import unicode_literals, print_function
 | |
| 
 | |
| import plac
 | |
| import random
 | |
| from pathlib import Path
 | |
| import spacy
 | |
| from spacy.util import minibatch, compounding
 | |
| 
 | |
| 
 | |
| # training data
 | |
| TRAIN_DATA = [
 | |
|     (
 | |
|         "They trade mortgage-backed securities.",
 | |
|         {
 | |
|             "heads": [1, 1, 4, 4, 5, 1, 1],
 | |
|             "deps": ["nsubj", "ROOT", "compound", "punct", "nmod", "dobj", "punct"],
 | |
|         },
 | |
|     ),
 | |
|     (
 | |
|         "I like London and Berlin.",
 | |
|         {
 | |
|             "heads": [1, 1, 1, 2, 2, 1],
 | |
|             "deps": ["nsubj", "ROOT", "dobj", "cc", "conj", "punct"],
 | |
|         },
 | |
|     ),
 | |
| ]
 | |
| 
 | |
| 
 | |
| @plac.annotations(
 | |
|     model=("Model name. Defaults to blank 'en' model.", "option", "m", str),
 | |
|     output_dir=("Optional output directory", "option", "o", Path),
 | |
|     n_iter=("Number of training iterations", "option", "n", int),
 | |
| )
 | |
| def main(model=None, output_dir=None, n_iter=15):
 | |
|     """Load the model, set up the pipeline and train the parser."""
 | |
|     if model is not None:
 | |
|         nlp = spacy.load(model)  # load existing spaCy model
 | |
|         print("Loaded model '%s'" % model)
 | |
|     else:
 | |
|         nlp = spacy.blank("en")  # create blank Language class
 | |
|         print("Created blank 'en' model")
 | |
| 
 | |
|     # add the parser to the pipeline if it doesn't exist
 | |
|     # nlp.create_pipe works for built-ins that are registered with spaCy
 | |
|     if "parser" not in nlp.pipe_names:
 | |
|         parser = nlp.create_pipe("parser")
 | |
|         nlp.add_pipe(parser, first=True)
 | |
|     # otherwise, get it, so we can add labels to it
 | |
|     else:
 | |
|         parser = nlp.get_pipe("parser")
 | |
| 
 | |
|     # add labels to the parser
 | |
|     for _, annotations in TRAIN_DATA:
 | |
|         for dep in annotations.get("deps", []):
 | |
|             parser.add_label(dep)
 | |
| 
 | |
|     # get names of other pipes to disable them during training
 | |
|     other_pipes = [pipe for pipe in nlp.pipe_names if pipe != "parser"]
 | |
|     with nlp.disable_pipes(*other_pipes):  # only train parser
 | |
|         optimizer = nlp.begin_training()
 | |
|         for itn in range(n_iter):
 | |
|             random.shuffle(TRAIN_DATA)
 | |
|             losses = {}
 | |
|             # batch up the examples using spaCy's minibatch
 | |
|             batches = minibatch(TRAIN_DATA, size=compounding(4.0, 32.0, 1.001))
 | |
|             for batch in batches:
 | |
|                 texts, annotations = zip(*batch)
 | |
|                 nlp.update(texts, annotations, sgd=optimizer, losses=losses)
 | |
|             print("Losses", losses)
 | |
| 
 | |
|     # test the trained model
 | |
|     test_text = "I like securities."
 | |
|     doc = nlp(test_text)
 | |
|     print("Dependencies", [(t.text, t.dep_, t.head.text) for t in doc])
 | |
| 
 | |
|     # save model to output directory
 | |
|     if output_dir is not None:
 | |
|         output_dir = Path(output_dir)
 | |
|         if not output_dir.exists():
 | |
|             output_dir.mkdir()
 | |
|         nlp.to_disk(output_dir)
 | |
|         print("Saved model to", output_dir)
 | |
| 
 | |
|         # test the saved model
 | |
|         print("Loading from", output_dir)
 | |
|         nlp2 = spacy.load(output_dir)
 | |
|         doc = nlp2(test_text)
 | |
|         print("Dependencies", [(t.text, t.dep_, t.head.text) for t in doc])
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     plac.call(main)
 | |
| 
 | |
|     # expected result:
 | |
|     # [
 | |
|     #   ('I', 'nsubj', 'like'),
 | |
|     #   ('like', 'ROOT', 'like'),
 | |
|     #   ('securities', 'dobj', 'like'),
 | |
|     #   ('.', 'punct', 'like')
 | |
|     # ]
 |