mirror of
https://github.com/explosion/spaCy.git
synced 2024-11-13 13:17:06 +03:00
229 lines
7.1 KiB
Cython
229 lines
7.1 KiB
Cython
import numpy
|
|
import codecs
|
|
import json
|
|
import random
|
|
from spacy.munge.alignment import align
|
|
|
|
from libc.string cimport memset
|
|
|
|
|
|
def read_json_file(loc):
|
|
paragraphs = []
|
|
for doc in json.load(open(loc)):
|
|
for paragraph in doc['paragraphs']:
|
|
words = []
|
|
ids = []
|
|
tags = []
|
|
heads = []
|
|
labels = []
|
|
iob_ents = []
|
|
for token in paragraph['tokens']:
|
|
words.append(token['orth'])
|
|
ids.append(token['id'])
|
|
tags.append(token['tag'])
|
|
heads.append(token['head'] if token['head'] >= 0 else token['id'])
|
|
labels.append(token['dep'])
|
|
iob_ents.append(token.get('iob_ent', '-'))
|
|
|
|
brackets = []
|
|
paragraphs.append((paragraph['raw'],
|
|
(ids, words, tags, heads, labels, _iob_to_biluo(iob_ents)),
|
|
paragraph.get('brackets', [])))
|
|
return paragraphs
|
|
|
|
|
|
def read_conll03_file(loc):
|
|
sents = []
|
|
text = codecs.open(loc, 'r', 'utf8').read().strip()
|
|
for doc in text.split('-DOCSTART- -X- O O'):
|
|
doc = doc.strip()
|
|
if not doc:
|
|
continue
|
|
for sent_str in doc.split('\n\n'):
|
|
words = []
|
|
tags = []
|
|
iob_ents = []
|
|
ids = []
|
|
lines = sent_str.strip().split('\n')
|
|
idx = 0
|
|
for line in lines:
|
|
word, tag, chunk, iob = line.split()
|
|
if tag == '"':
|
|
tag = '``'
|
|
if '|' in tag:
|
|
tag = tag.split('|')[0]
|
|
words.append(word)
|
|
tags.append(tag)
|
|
iob_ents.append(iob)
|
|
ids.append(idx)
|
|
idx += len(word) + 1
|
|
heads = [-1] * len(words)
|
|
labels = ['ROOT'] * len(words)
|
|
sents.append((' '.join(words), [words],
|
|
(ids, words, tags, heads, labels, _iob_to_biluo(iob_ents))))
|
|
return sents
|
|
|
|
|
|
def read_docparse_file(loc):
|
|
sents = []
|
|
for sent_str in codecs.open(loc, 'r', 'utf8').read().strip().split('\n\n'):
|
|
words = []
|
|
heads = []
|
|
labels = []
|
|
tags = []
|
|
ids = []
|
|
iob_ents = []
|
|
lines = sent_str.strip().split('\n')
|
|
raw_text = lines.pop(0).strip()
|
|
tok_text = lines.pop(0).strip()
|
|
for i, line in enumerate(lines):
|
|
id_, word, pos_string, head_idx, label, iob_ent = _parse_line(line)
|
|
if label == 'root':
|
|
label = 'ROOT'
|
|
words.append(word)
|
|
if head_idx < 0:
|
|
head_idx = id_
|
|
ids.append(id_)
|
|
heads.append(head_idx)
|
|
labels.append(label)
|
|
tags.append(pos_string)
|
|
iob_ents.append(iob_ent)
|
|
tokenized = [s.replace('<SEP>', ' ').split(' ')
|
|
for s in tok_text.split('<SENT>')]
|
|
tuples = (ids, words, tags, heads, labels, iob_ents)
|
|
sents.append((raw_text, tokenized, tuples, []))
|
|
return sents
|
|
|
|
|
|
def _iob_to_biluo(tags):
|
|
out = []
|
|
curr_label = None
|
|
tags = list(tags)
|
|
while tags:
|
|
out.extend(_consume_os(tags))
|
|
out.extend(_consume_ent(tags))
|
|
return out
|
|
|
|
|
|
def _consume_os(tags):
|
|
while tags and tags[0] == 'O':
|
|
yield tags.pop(0)
|
|
|
|
|
|
def _consume_ent(tags):
|
|
if not tags:
|
|
return []
|
|
target = tags.pop(0).replace('B', 'I')
|
|
length = 1
|
|
while tags and tags[0] == target:
|
|
length += 1
|
|
tags.pop(0)
|
|
label = target[2:]
|
|
if length == 1:
|
|
return ['U-' + label]
|
|
else:
|
|
start = 'B-' + label
|
|
end = 'L-' + label
|
|
middle = ['I-%s' % label for _ in range(1, length - 1)]
|
|
return [start] + middle + [end]
|
|
|
|
|
|
def _parse_line(line):
|
|
pieces = line.split()
|
|
if len(pieces) == 4:
|
|
return 0, pieces[0], pieces[1], int(pieces[2]) - 1, pieces[3]
|
|
else:
|
|
id_ = int(pieces[0])
|
|
word = pieces[1]
|
|
pos = pieces[3]
|
|
iob_ent = pieces[5]
|
|
head_idx = int(pieces[6])
|
|
label = pieces[7]
|
|
return id_, word, pos, head_idx, label, iob_ent
|
|
|
|
|
|
cdef class GoldParse:
|
|
def __init__(self, tokens, annot_tuples, brackets=tuple()):
|
|
self.mem = Pool()
|
|
self.loss = 0
|
|
self.length = len(tokens)
|
|
|
|
# These are filled by the tagger/parser/entity recogniser
|
|
self.c_tags = <int*>self.mem.alloc(len(tokens), sizeof(int))
|
|
self.c_heads = <int*>self.mem.alloc(len(tokens), sizeof(int))
|
|
self.c_labels = <int*>self.mem.alloc(len(tokens), sizeof(int))
|
|
self.c_ner = <Transition*>self.mem.alloc(len(tokens), sizeof(Transition))
|
|
self.c_brackets = <int**>self.mem.alloc(len(tokens), sizeof(int*))
|
|
for i in range(len(tokens)):
|
|
self.c_brackets[i] = <int*>self.mem.alloc(len(tokens), sizeof(int))
|
|
|
|
self.tags = [None] * len(tokens)
|
|
self.heads = [None] * len(tokens)
|
|
self.labels = [''] * len(tokens)
|
|
self.ner = ['-'] * len(tokens)
|
|
|
|
cand_to_gold = align([t.orth_ for t in tokens], annot_tuples[1])
|
|
gold_to_cand = align(annot_tuples[1], [t.orth_ for t in tokens])
|
|
|
|
self.ents = []
|
|
|
|
for i, gold_i in enumerate(cand_to_gold):
|
|
if gold_i is None:
|
|
# TODO: What do we do for missing values again?
|
|
pass
|
|
else:
|
|
self.tags[i] = annot_tuples[2][gold_i]
|
|
self.heads[i] = gold_to_cand[annot_tuples[3][gold_i]]
|
|
self.labels[i] = annot_tuples[4][gold_i]
|
|
# TODO: Declare NER information MISSING if tokenization incorrect
|
|
for start, end, label in self.ents:
|
|
if start == (end - 1):
|
|
self.ner[start] = 'U-%s' % label
|
|
else:
|
|
self.ner[start] = 'B-%s' % label
|
|
for i in range(start+1, end-1):
|
|
self.ner[i] = 'I-%s' % label
|
|
self.ner[end-1] = 'L-%s' % label
|
|
|
|
self.brackets = {}
|
|
for (gold_start, gold_end, label_str) in brackets:
|
|
start = gold_to_cand[gold_start]
|
|
end = gold_to_cand[gold_end]
|
|
if start is not None and end is not None:
|
|
self.brackets.setdefault(start, {}).setdefault(end, set())
|
|
self.brackets[end][start].add(label)
|
|
|
|
def __len__(self):
|
|
return self.length
|
|
|
|
@property
|
|
def n_non_punct(self):
|
|
return len([l for l in self.labels if l not in ('P', 'punct')])
|
|
|
|
cdef int heads_correct(self, TokenC* tokens, bint score_punct=False) except -1:
|
|
n = 0
|
|
for i in range(self.length):
|
|
if not score_punct and self.labels_[i] not in ('P', 'punct'):
|
|
continue
|
|
if self.heads[i] == -1:
|
|
continue
|
|
n += (i + tokens[i].head) == self.heads[i]
|
|
return n
|
|
|
|
def is_correct(self, i, head):
|
|
return head == self.c_heads[i]
|
|
|
|
|
|
def is_punct_label(label):
|
|
return label == 'P' or label.lower() == 'punct'
|
|
|
|
|
|
def _map_indices_to_tokens(ids, heads):
|
|
mapped = []
|
|
for head in heads:
|
|
if head not in ids:
|
|
mapped.append(None)
|
|
else:
|
|
mapped.append(ids.index(head))
|
|
return mapped
|