mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 10:16:27 +03:00
2da16adcc2
Dropout can now be specified in the `Parser.update()` method via the `drop` keyword argument, e.g. nlp.entity.update(doc, gold, drop=0.4) This will randomly drop 40% of features, and multiply the value of the others by 1. / 0.4. This may be useful for generalising from small data sets. This commit also patches the examples/training/train_new_entity_type.py example, to use dropout and fix the output (previously it did not output the learned entity).
528 lines
19 KiB
Cython
528 lines
19 KiB
Cython
"""
|
|
MALT-style dependency parser
|
|
"""
|
|
# coding: utf-8
|
|
# cython: infer_types=True
|
|
from __future__ import unicode_literals
|
|
|
|
from collections import Counter
|
|
import ujson
|
|
|
|
cimport cython
|
|
cimport cython.parallel
|
|
|
|
import numpy.random
|
|
|
|
from cpython.ref cimport PyObject, Py_INCREF, Py_XDECREF
|
|
from cpython.exc cimport PyErr_CheckSignals
|
|
from libc.stdint cimport uint32_t, uint64_t
|
|
from libc.string cimport memset, memcpy
|
|
from libc.stdlib cimport malloc, calloc, free
|
|
from thinc.typedefs cimport weight_t, class_t, feat_t, atom_t, hash_t
|
|
from thinc.linear.avgtron cimport AveragedPerceptron
|
|
from thinc.linalg cimport VecVec
|
|
from thinc.structs cimport SparseArrayC, FeatureC, ExampleC
|
|
from thinc.extra.eg cimport Example
|
|
from cymem.cymem cimport Pool, Address
|
|
from murmurhash.mrmr cimport hash64
|
|
from preshed.maps cimport MapStruct
|
|
from preshed.maps cimport map_get
|
|
|
|
from . import _parse_features
|
|
from ._parse_features cimport CONTEXT_SIZE
|
|
from ._parse_features cimport fill_context
|
|
from .stateclass cimport StateClass
|
|
from ._state cimport StateC
|
|
from .nonproj import PseudoProjectivity
|
|
from .transition_system import OracleError
|
|
from .transition_system cimport TransitionSystem, Transition
|
|
from ..structs cimport TokenC
|
|
from ..tokens.doc cimport Doc
|
|
from ..strings cimport StringStore
|
|
from ..gold cimport GoldParse
|
|
|
|
|
|
USE_FTRL = True
|
|
DEBUG = False
|
|
def set_debug(val):
|
|
global DEBUG
|
|
DEBUG = val
|
|
|
|
|
|
def get_templates(name):
|
|
pf = _parse_features
|
|
if name == 'ner':
|
|
return pf.ner
|
|
elif name == 'debug':
|
|
return pf.unigrams
|
|
elif name.startswith('embed'):
|
|
return (pf.words, pf.tags, pf.labels)
|
|
else:
|
|
return (pf.unigrams + pf.s0_n0 + pf.s1_n0 + pf.s1_s0 + pf.s0_n1 + pf.n0_n1 + \
|
|
pf.tree_shape + pf.trigrams)
|
|
|
|
|
|
cdef class ParserModel(AveragedPerceptron):
|
|
cdef int set_featuresC(self, atom_t* context, FeatureC* features,
|
|
const StateC* state) nogil:
|
|
fill_context(context, state)
|
|
nr_feat = self.extracter.set_features(features, context)
|
|
return nr_feat
|
|
|
|
def update(self, Example eg, itn=0):
|
|
"""
|
|
Does regression on negative cost. Sort of cute?
|
|
"""
|
|
self.time += 1
|
|
cdef int best = arg_max_if_gold(eg.c.scores, eg.c.costs, eg.c.nr_class)
|
|
cdef int guess = eg.guess
|
|
if guess == best or best == -1:
|
|
return 0.0
|
|
cdef FeatureC feat
|
|
cdef int clas
|
|
cdef weight_t gradient
|
|
if USE_FTRL:
|
|
for feat in eg.c.features[:eg.c.nr_feat]:
|
|
for clas in range(eg.c.nr_class):
|
|
if eg.c.is_valid[clas] and eg.c.scores[clas] >= eg.c.scores[best]:
|
|
gradient = eg.c.scores[clas] + eg.c.costs[clas]
|
|
self.update_weight_ftrl(feat.key, clas, feat.value * gradient)
|
|
else:
|
|
for feat in eg.c.features[:eg.c.nr_feat]:
|
|
self.update_weight(feat.key, guess, feat.value * eg.c.costs[guess])
|
|
self.update_weight(feat.key, best, -feat.value * eg.c.costs[guess])
|
|
return eg.c.costs[guess]
|
|
|
|
def update_from_histories(self, TransitionSystem moves, Doc doc, histories, weight_t min_grad=0.0):
|
|
cdef Pool mem = Pool()
|
|
features = <FeatureC*>mem.alloc(self.nr_feat, sizeof(FeatureC))
|
|
|
|
cdef StateClass stcls
|
|
|
|
cdef class_t clas
|
|
self.time += 1
|
|
cdef atom_t[CONTEXT_SIZE] atoms
|
|
histories = [(grad, hist) for grad, hist in histories if abs(grad) >= min_grad and hist]
|
|
if not histories:
|
|
return None
|
|
gradient = [Counter() for _ in range(max([max(h)+1 for _, h in histories]))]
|
|
for d_loss, history in histories:
|
|
stcls = StateClass.init(doc.c, doc.length)
|
|
moves.initialize_state(stcls.c)
|
|
for clas in history:
|
|
nr_feat = self.set_featuresC(atoms, features, stcls.c)
|
|
clas_grad = gradient[clas]
|
|
for feat in features[:nr_feat]:
|
|
clas_grad[feat.key] += d_loss * feat.value
|
|
moves.c[clas].do(stcls.c, moves.c[clas].label)
|
|
cdef feat_t key
|
|
cdef weight_t d_feat
|
|
for clas, clas_grad in enumerate(gradient):
|
|
for key, d_feat in clas_grad.items():
|
|
if d_feat != 0:
|
|
self.update_weight_ftrl(key, clas, d_feat)
|
|
|
|
|
|
cdef class Parser:
|
|
"""
|
|
Base class of the DependencyParser and EntityRecognizer.
|
|
"""
|
|
@classmethod
|
|
def load(cls, path, Vocab vocab, TransitionSystem=None, require=False, **cfg):
|
|
"""
|
|
Load the statistical model from the supplied path.
|
|
|
|
Arguments:
|
|
path (Path):
|
|
The path to load from.
|
|
vocab (Vocab):
|
|
The vocabulary. Must be shared by the documents to be processed.
|
|
require (bool):
|
|
Whether to raise an error if the files are not found.
|
|
Returns (Parser):
|
|
The newly constructed object.
|
|
"""
|
|
with (path / 'config.json').open() as file_:
|
|
cfg = ujson.load(file_)
|
|
# TODO: remove this shim when we don't have to support older data
|
|
if 'labels' in cfg and 'actions' not in cfg:
|
|
cfg['actions'] = cfg.pop('labels')
|
|
# TODO: remove this shim when we don't have to support older data
|
|
for action_name, labels in dict(cfg.get('actions', {})).items():
|
|
# We need this to be sorted
|
|
if isinstance(labels, dict):
|
|
labels = list(sorted(labels.keys()))
|
|
cfg['actions'][action_name] = labels
|
|
self = cls(vocab, TransitionSystem=TransitionSystem, model=None, **cfg)
|
|
if (path / 'model').exists():
|
|
self.model.load(str(path / 'model'))
|
|
elif require:
|
|
raise IOError(
|
|
"Required file %s/model not found when loading" % str(path))
|
|
return self
|
|
|
|
def __init__(self, Vocab vocab, TransitionSystem=None, ParserModel model=None, **cfg):
|
|
"""
|
|
Create a Parser.
|
|
|
|
Arguments:
|
|
vocab (Vocab):
|
|
The vocabulary object. Must be shared with documents to be processed.
|
|
model (thinc.linear.AveragedPerceptron):
|
|
The statistical model.
|
|
Returns (Parser):
|
|
The newly constructed object.
|
|
"""
|
|
if TransitionSystem is None:
|
|
TransitionSystem = self.TransitionSystem
|
|
self.vocab = vocab
|
|
cfg['actions'] = TransitionSystem.get_actions(**cfg)
|
|
self.moves = TransitionSystem(vocab.strings, cfg['actions'])
|
|
# TODO: Remove this when we no longer need to support old-style models
|
|
if isinstance(cfg.get('features'), basestring):
|
|
cfg['features'] = get_templates(cfg['features'])
|
|
elif 'features' not in cfg:
|
|
cfg['features'] = self.feature_templates
|
|
|
|
self.model = ParserModel(cfg['features'])
|
|
self.model.l1_penalty = cfg.get('L1', 0.0)
|
|
self.model.learn_rate = cfg.get('learn_rate', 0.001)
|
|
|
|
self.cfg = cfg
|
|
# TODO: This is a pretty hacky fix to the problem of adding more
|
|
# labels. The issue is they come in out of order, if labels are
|
|
# added during training
|
|
for label in cfg.get('extra_labels', []):
|
|
self.add_label(label)
|
|
|
|
def __reduce__(self):
|
|
return (Parser, (self.vocab, self.moves, self.model), None, None)
|
|
|
|
def __call__(self, Doc tokens):
|
|
"""
|
|
Apply the entity recognizer, setting the annotations onto the Doc object.
|
|
|
|
Arguments:
|
|
doc (Doc): The document to be processed.
|
|
Returns:
|
|
None
|
|
"""
|
|
cdef int nr_feat = self.model.nr_feat
|
|
with nogil:
|
|
status = self.parseC(tokens.c, tokens.length, nr_feat)
|
|
# Check for KeyboardInterrupt etc. Untested
|
|
PyErr_CheckSignals()
|
|
if status != 0:
|
|
raise ParserStateError(tokens)
|
|
self.moves.finalize_doc(tokens)
|
|
|
|
def pipe(self, stream, int batch_size=1000, int n_threads=2):
|
|
"""
|
|
Process a stream of documents.
|
|
|
|
Arguments:
|
|
stream: The sequence of documents to process.
|
|
batch_size (int):
|
|
The number of documents to accumulate into a working set.
|
|
n_threads (int):
|
|
The number of threads with which to work on the buffer in parallel.
|
|
Yields (Doc): Documents, in order.
|
|
"""
|
|
cdef Pool mem = Pool()
|
|
cdef TokenC** doc_ptr = <TokenC**>mem.alloc(batch_size, sizeof(TokenC*))
|
|
cdef int* lengths = <int*>mem.alloc(batch_size, sizeof(int))
|
|
cdef Doc doc
|
|
cdef int i
|
|
cdef int nr_feat = self.model.nr_feat
|
|
cdef int status
|
|
queue = []
|
|
for doc in stream:
|
|
doc_ptr[len(queue)] = doc.c
|
|
lengths[len(queue)] = doc.length
|
|
queue.append(doc)
|
|
if len(queue) == batch_size:
|
|
with nogil:
|
|
for i in cython.parallel.prange(batch_size, num_threads=n_threads):
|
|
status = self.parseC(doc_ptr[i], lengths[i], nr_feat)
|
|
if status != 0:
|
|
with gil:
|
|
raise ParserStateError(queue[i])
|
|
PyErr_CheckSignals()
|
|
for doc in queue:
|
|
self.moves.finalize_doc(doc)
|
|
yield doc
|
|
queue = []
|
|
batch_size = len(queue)
|
|
with nogil:
|
|
for i in cython.parallel.prange(batch_size, num_threads=n_threads):
|
|
status = self.parseC(doc_ptr[i], lengths[i], nr_feat)
|
|
if status != 0:
|
|
with gil:
|
|
raise ParserStateError(queue[i])
|
|
PyErr_CheckSignals()
|
|
for doc in queue:
|
|
self.moves.finalize_doc(doc)
|
|
yield doc
|
|
|
|
cdef int parseC(self, TokenC* tokens, int length, int nr_feat) nogil:
|
|
state = new StateC(tokens, length)
|
|
# NB: This can change self.moves.n_moves!
|
|
# I think this causes memory errors if called by .pipe()
|
|
self.moves.initialize_state(state)
|
|
nr_class = self.moves.n_moves
|
|
|
|
cdef ExampleC eg
|
|
eg.nr_feat = nr_feat
|
|
eg.nr_atom = CONTEXT_SIZE
|
|
eg.nr_class = nr_class
|
|
eg.features = <FeatureC*>calloc(sizeof(FeatureC), nr_feat)
|
|
eg.atoms = <atom_t*>calloc(sizeof(atom_t), CONTEXT_SIZE)
|
|
eg.scores = <weight_t*>calloc(sizeof(weight_t), nr_class)
|
|
eg.is_valid = <int*>calloc(sizeof(int), nr_class)
|
|
cdef int i
|
|
while not state.is_final():
|
|
eg.nr_feat = self.model.set_featuresC(eg.atoms, eg.features, state)
|
|
self.moves.set_valid(eg.is_valid, state)
|
|
self.model.set_scoresC(eg.scores, eg.features, eg.nr_feat)
|
|
|
|
guess = VecVec.arg_max_if_true(eg.scores, eg.is_valid, eg.nr_class)
|
|
if guess < 0:
|
|
return 1
|
|
|
|
action = self.moves.c[guess]
|
|
|
|
action.do(state, action.label)
|
|
memset(eg.scores, 0, sizeof(eg.scores[0]) * eg.nr_class)
|
|
for i in range(eg.nr_class):
|
|
eg.is_valid[i] = 1
|
|
self.moves.finalize_state(state)
|
|
for i in range(length):
|
|
tokens[i] = state._sent[i]
|
|
del state
|
|
free(eg.features)
|
|
free(eg.atoms)
|
|
free(eg.scores)
|
|
free(eg.is_valid)
|
|
return 0
|
|
|
|
def update(self, Doc tokens, GoldParse gold, itn=0, double drop=0.0):
|
|
"""
|
|
Update the statistical model.
|
|
|
|
Arguments:
|
|
doc (Doc):
|
|
The example document for the update.
|
|
gold (GoldParse):
|
|
The gold-standard annotations, to calculate the loss.
|
|
Returns (float):
|
|
The loss on this example.
|
|
"""
|
|
self.moves.preprocess_gold(gold)
|
|
cdef StateClass stcls = StateClass.init(tokens.c, tokens.length)
|
|
self.moves.initialize_state(stcls.c)
|
|
cdef Pool mem = Pool()
|
|
cdef Example eg = Example(
|
|
nr_class=self.moves.n_moves,
|
|
nr_atom=CONTEXT_SIZE,
|
|
nr_feat=self.model.nr_feat)
|
|
cdef weight_t loss = 0
|
|
cdef Transition action
|
|
cdef double dropout_rate = self.cfg.get('dropout', drop)
|
|
while not stcls.is_final():
|
|
eg.c.nr_feat = self.model.set_featuresC(eg.c.atoms, eg.c.features,
|
|
stcls.c)
|
|
dropout(eg.c.features, eg.c.nr_feat, dropout_rate)
|
|
self.moves.set_costs(eg.c.is_valid, eg.c.costs, stcls, gold)
|
|
self.model.set_scoresC(eg.c.scores, eg.c.features, eg.c.nr_feat)
|
|
guess = VecVec.arg_max_if_true(eg.c.scores, eg.c.is_valid, eg.c.nr_class)
|
|
self.model.update(eg)
|
|
|
|
action = self.moves.c[guess]
|
|
action.do(stcls.c, action.label)
|
|
loss += eg.costs[guess]
|
|
eg.fill_scores(0, eg.c.nr_class)
|
|
eg.fill_costs(0, eg.c.nr_class)
|
|
eg.fill_is_valid(1, eg.c.nr_class)
|
|
|
|
self.moves.finalize_state(stcls.c)
|
|
return loss
|
|
|
|
def step_through(self, Doc doc, GoldParse gold=None):
|
|
"""
|
|
Set up a stepwise state, to introspect and control the transition sequence.
|
|
|
|
Arguments:
|
|
doc (Doc): The document to step through.
|
|
gold (GoldParse): Optional gold parse
|
|
Returns (StepwiseState):
|
|
A state object, to step through the annotation process.
|
|
"""
|
|
return StepwiseState(self, doc, gold=gold)
|
|
|
|
def from_transition_sequence(self, Doc doc, sequence):
|
|
"""Control the annotations on a document by specifying a transition sequence
|
|
to follow.
|
|
|
|
Arguments:
|
|
doc (Doc): The document to annotate.
|
|
sequence: A sequence of action names, as unicode strings.
|
|
Returns: None
|
|
"""
|
|
with self.step_through(doc) as stepwise:
|
|
for transition in sequence:
|
|
stepwise.transition(transition)
|
|
|
|
def add_label(self, label):
|
|
# Doesn't set label into serializer -- subclasses override it to do that.
|
|
for action in self.moves.action_types:
|
|
added = self.moves.add_action(action, label)
|
|
if added:
|
|
# Important that the labels be stored as a list! We need the
|
|
# order, or the model goes out of synch
|
|
self.cfg.setdefault('extra_labels', []).append(label)
|
|
|
|
|
|
cdef int dropout(FeatureC* feats, int nr_feat, float prob) except -1:
|
|
if prob <= 0 or prob >= 1.:
|
|
return 0
|
|
cdef double[::1] py_probs = numpy.random.uniform(0., 1., nr_feat)
|
|
cdef double* probs = &py_probs[0]
|
|
for i in range(nr_feat):
|
|
if probs[i] >= prob:
|
|
feats[i].value /= prob
|
|
else:
|
|
feats[i].value = 0.
|
|
|
|
|
|
cdef class StepwiseState:
|
|
cdef readonly StateClass stcls
|
|
cdef readonly Example eg
|
|
cdef readonly Doc doc
|
|
cdef readonly GoldParse gold
|
|
cdef readonly Parser parser
|
|
|
|
def __init__(self, Parser parser, Doc doc, GoldParse gold=None):
|
|
self.parser = parser
|
|
self.doc = doc
|
|
if gold is not None:
|
|
self.gold = gold
|
|
self.parser.moves.preprocess_gold(self.gold)
|
|
else:
|
|
self.gold = GoldParse(doc)
|
|
self.stcls = StateClass.init(doc.c, doc.length)
|
|
self.parser.moves.initialize_state(self.stcls.c)
|
|
self.eg = Example(
|
|
nr_class=self.parser.moves.n_moves,
|
|
nr_atom=CONTEXT_SIZE,
|
|
nr_feat=self.parser.model.nr_feat)
|
|
|
|
def __enter__(self):
|
|
return self
|
|
|
|
def __exit__(self, type, value, traceback):
|
|
self.finish()
|
|
|
|
@property
|
|
def is_final(self):
|
|
return self.stcls.is_final()
|
|
|
|
@property
|
|
def stack(self):
|
|
return self.stcls.stack
|
|
|
|
@property
|
|
def queue(self):
|
|
return self.stcls.queue
|
|
|
|
@property
|
|
def heads(self):
|
|
return [self.stcls.H(i) for i in range(self.stcls.c.length)]
|
|
|
|
@property
|
|
def deps(self):
|
|
return [self.doc.vocab.strings[self.stcls.c._sent[i].dep]
|
|
for i in range(self.stcls.c.length)]
|
|
|
|
@property
|
|
def costs(self):
|
|
"""
|
|
Find the action-costs for the current state.
|
|
"""
|
|
if not self.gold:
|
|
raise ValueError("Can't set costs: No GoldParse provided")
|
|
self.parser.moves.set_costs(self.eg.c.is_valid, self.eg.c.costs,
|
|
self.stcls, self.gold)
|
|
costs = {}
|
|
for i in range(self.parser.moves.n_moves):
|
|
if not self.eg.c.is_valid[i]:
|
|
continue
|
|
transition = self.parser.moves.c[i]
|
|
name = self.parser.moves.move_name(transition.move, transition.label)
|
|
costs[name] = self.eg.c.costs[i]
|
|
return costs
|
|
|
|
def predict(self):
|
|
self.eg.reset()
|
|
self.eg.c.nr_feat = self.parser.model.set_featuresC(self.eg.c.atoms, self.eg.c.features,
|
|
self.stcls.c)
|
|
self.parser.moves.set_valid(self.eg.c.is_valid, self.stcls.c)
|
|
self.parser.model.set_scoresC(self.eg.c.scores,
|
|
self.eg.c.features, self.eg.c.nr_feat)
|
|
|
|
cdef Transition action = self.parser.moves.c[self.eg.guess]
|
|
return self.parser.moves.move_name(action.move, action.label)
|
|
|
|
def transition(self, action_name=None):
|
|
if action_name is None:
|
|
action_name = self.predict()
|
|
moves = {'S': 0, 'D': 1, 'L': 2, 'R': 3}
|
|
if action_name == '_':
|
|
action_name = self.predict()
|
|
action = self.parser.moves.lookup_transition(action_name)
|
|
elif action_name == 'L' or action_name == 'R':
|
|
self.predict()
|
|
move = moves[action_name]
|
|
clas = _arg_max_clas(self.eg.c.scores, move, self.parser.moves.c,
|
|
self.eg.c.nr_class)
|
|
action = self.parser.moves.c[clas]
|
|
else:
|
|
action = self.parser.moves.lookup_transition(action_name)
|
|
action.do(self.stcls.c, action.label)
|
|
|
|
def finish(self):
|
|
if self.stcls.is_final():
|
|
self.parser.moves.finalize_state(self.stcls.c)
|
|
self.doc.set_parse(self.stcls.c._sent)
|
|
self.parser.moves.finalize_doc(self.doc)
|
|
|
|
|
|
class ParserStateError(ValueError):
|
|
def __init__(self, doc):
|
|
ValueError.__init__(self,
|
|
"Error analysing doc -- no valid actions available. This should "
|
|
"never happen, so please report the error on the issue tracker. "
|
|
"Here's the thread to do so --- reopen it if it's closed:\n"
|
|
"https://github.com/spacy-io/spaCy/issues/429\n"
|
|
"Please include the text that the parser failed on, which is:\n"
|
|
"%s" % repr(doc.text))
|
|
|
|
cdef int arg_max_if_gold(const weight_t* scores, const weight_t* costs, int n) nogil:
|
|
cdef int best = -1
|
|
for i in range(n):
|
|
if costs[i] <= 0:
|
|
if best == -1 or scores[i] > scores[best]:
|
|
best = i
|
|
return best
|
|
|
|
|
|
cdef int _arg_max_clas(const weight_t* scores, int move, const Transition* actions,
|
|
int nr_class) except -1:
|
|
cdef weight_t score = 0
|
|
cdef int mode = -1
|
|
cdef int i
|
|
for i in range(nr_class):
|
|
if actions[i].move == move and (mode == -1 or scores[i] >= score):
|
|
mode = i
|
|
score = scores[i]
|
|
return mode
|