spaCy/spacy/pipeline/span_finder.py

388 lines
14 KiB
Python

from typing import List, Dict, Callable, Tuple, Optional, Iterable, Any, cast
from functools import partial
from thinc.api import Config, Model, set_dropout_rate
from thinc.api import Optimizer, get_current_ops, Ops
from thinc.types import Floats2d, Ragged, Ints1d
from spacy.language import Language
from spacy.pipeline.trainable_pipe import TrainablePipe
from spacy.tokens import Doc
from spacy.training import Example
from spacy.scorer import Scorer
from ..util import registry
from .spancat import Suggester
span_finder_default_config = """
[model]
@architectures = "spacy.SpanFinder.v1"
[model.scorer]
@layers = "spacy.LinearLogistic.v1"
nO = 2
[model.tok2vec]
@architectures = "spacy.Tok2Vec.v2"
[model.tok2vec.embed]
@architectures = "spacy.MultiHashEmbed.v2"
width = 96
rows = [5000, 2000, 1000, 1000]
attrs = ["ORTH", "PREFIX", "SUFFIX", "SHAPE"]
include_static_vectors = false
[model.tok2vec.encode]
@architectures = "spacy.MaxoutWindowEncoder.v2"
width = ${model.tok2vec.embed.width}
window_size = 1
maxout_pieces = 3
depth = 4
"""
DEFAULT_SPAN_FINDER_MODEL = Config().from_str(span_finder_default_config)["model"]
DEFAULT_PREDICTED_KEY = "span_candidates"
# XXX What was this TODO for?
DEFAULT_TRAINING_KEY = "sc" # TODO: define in spancat
@Language.factory(
"span_finder",
assigns=["doc.spans"],
default_config={
"threshold": 0.5,
"model": DEFAULT_SPAN_FINDER_MODEL,
"predicted_key": DEFAULT_PREDICTED_KEY,
"training_key": DEFAULT_TRAINING_KEY,
# XXX Doesn't 0 seem bad compared to None instead?
"max_length": 0,
"min_length": 0,
"scorer": {
"@scorers": "spacy.span_finder_scorer.v1",
"predicted_key": DEFAULT_PREDICTED_KEY,
"training_key": DEFAULT_TRAINING_KEY,
},
},
default_score_weights={
f"span_finder_{DEFAULT_PREDICTED_KEY}_f": 1.0,
f"span_finder_{DEFAULT_PREDICTED_KEY}_p": 0.0,
f"span_finder_{DEFAULT_PREDICTED_KEY}_r": 0.0,
},
)
def make_span_finder(
nlp: Language,
name: str,
model: Model[Iterable[Doc], Floats2d],
scorer: Optional[Callable],
threshold: float,
max_length: int,
min_length: int,
predicted_key: str = DEFAULT_PREDICTED_KEY,
training_key: str = DEFAULT_TRAINING_KEY,
) -> "SpanFinder":
"""Create a SpanFinder component. The component predicts whether a token is
the start or the end of a potential span.
model (Model[List[Doc], Floats2d]): A model instance that
is given a list of documents and predicts a probability for each token.
threshold (float): Minimum probability to consider a prediction positive.
predicted_key (str): Name of the span group the predicted spans are saved
to
training_key (str): Name of the span group the training spans are read
from
max_length (int): Max length of the produced spans (no max limitation when
set to 0)
min_length (int): Min length of the produced spans (no min limitation when
set to 0)
"""
return SpanFinder(
nlp,
model=model,
threshold=threshold,
name=name,
scorer=scorer,
max_length=max_length,
min_length=min_length,
predicted_key=predicted_key,
training_key=training_key,
)
@registry.scorers("spacy.span_finder_scorer.v1")
def make_span_finder_scorer(
predicted_key: str = DEFAULT_PREDICTED_KEY,
training_key: str = DEFAULT_TRAINING_KEY,
):
return partial(
span_finder_score, predicted_key=predicted_key, training_key=training_key
)
def span_finder_score(
examples: Iterable[Example],
*,
predicted_key: str = DEFAULT_PREDICTED_KEY,
training_key: str = DEFAULT_TRAINING_KEY,
**kwargs,
) -> Dict[str, Any]:
kwargs = dict(kwargs)
attr_prefix = "span_finder_"
kwargs.setdefault("attr", f"{attr_prefix}{predicted_key}")
kwargs.setdefault("allow_overlap", True)
kwargs.setdefault(
"getter", lambda doc, key: doc.spans.get(key[len(attr_prefix) :], [])
)
kwargs.setdefault("labeled", False)
kwargs.setdefault("has_annotation", lambda doc: predicted_key in doc.spans)
# score_spans can only score spans with the same key in both the reference
# and predicted docs, so temporarily copy the reference spans from the
# reference key to the candidates key in the reference docs, restoring the
# original span groups afterwards
orig_span_groups = []
for eg in examples:
orig_span_groups.append(eg.reference.spans.get(predicted_key))
if training_key in eg.reference.spans:
eg.reference.spans[predicted_key] = eg.reference.spans[training_key]
scores = Scorer.score_spans(examples, **kwargs)
for orig_span_group, eg in zip(orig_span_groups, examples):
if orig_span_group is not None:
eg.reference.spans[predicted_key] = orig_span_group
return scores
class SpanFinder(TrainablePipe):
"""Pipeline that learns span boundaries"""
def __init__(
self,
nlp: Language,
model: Model[Iterable[Doc], Floats2d],
name: str = "span_finder",
*,
threshold: float = 0.5,
max_length: int = 0,
min_length: int = 0,
# XXX I think this is weird and should be just None like in
scorer: Optional[Callable] = partial(
span_finder_score,
predicted_key=DEFAULT_PREDICTED_KEY,
training_key=DEFAULT_TRAINING_KEY,
),
predicted_key: str = DEFAULT_PREDICTED_KEY,
training_key: str = DEFAULT_TRAINING_KEY,
) -> None:
"""Initialize the span boundary detector.
model (thinc.api.Model): The Thinc Model powering the pipeline component.
name (str): The component instance name, used to add entries to the
losses during training.
threshold (float): Minimum probability to consider a prediction
positive.
scorer (Optional[Callable]): The scoring method.
predicted_key (str): Name of the span group the candidate spans are saved to
training_key (str): Name of the span group the training spans are read from
max_length (int): Max length of the produced spans (unlimited when set to 0)
min_length (int): Min length of the produced spans (unlimited when set to 0)
"""
self.vocab = nlp.vocab
self.threshold = threshold
self.max_length = max_length
self.min_length = min_length
self.predicted_key = predicted_key
self.training_key = training_key
self.model = model
self.name = name
self.scorer = scorer
def predict(self, docs: Iterable[Doc]):
"""Apply the pipeline's model to a batch of docs, without modifying them.
docs (Iterable[Doc]): The documents to predict.
RETURNS: The models prediction for each document.
"""
scores = self.model.predict(docs)
return scores
def set_annotations(self, docs: Iterable[Doc], scores: Floats2d) -> None:
"""Modify a batch of Doc objects, using pre-computed scores.
docs (Iterable[Doc]): The documents to modify.
scores: The scores to set, produced by SpanFinder predict method.
"""
lengths = [len(doc) for doc in docs]
offset = 0
scores_per_doc = []
# XXX Isn't this really inefficient that we are creating these
# slices ahead of time? Couldn't we just do this in the next loop?
for length in lengths:
scores_per_doc.append(scores[offset : offset + length])
offset += length
for doc, doc_scores in zip(docs, scores_per_doc):
doc.spans[self.predicted_key] = []
starts = []
ends = []
for token, token_score in zip(doc, doc_scores):
if token_score[0] >= self.threshold:
starts.append(token.i)
if token_score[1] >= self.threshold:
ends.append(token.i)
for start in starts:
for end in ends:
span_length = end + 1 - start
# XXX I really feel like min_length and max_length should be
# None instead of 0 and then just set them to -1 and inf if they
# are given as None.
if span_length > 0:
if (
self.min_length <= 0 or span_length >= self.min_length
) and (self.max_length <= 0 or span_length <= self.max_length):
doc.spans[self.predicted_key].append(doc[start : end + 1])
elif self.max_length > 0 and span_length > self.max_length:
break
def update(
self,
examples: Iterable[Example],
*,
drop: float = 0.0,
sgd: Optional[Optimizer] = None,
losses: Optional[Dict[str, float]] = None,
) -> Dict[str, float]:
"""Learn from a batch of documents and gold-standard information,
updating the pipe's model. Delegates to predict and get_loss.
examples (Iterable[Example]): A batch of Example objects.
drop (float): The dropout rate.
sgd (Optional[thinc.api.Optimizer]): The optimizer.
losses (Optional[Dict[str, float]]): Optional record of the loss during training.
Updated using the component name as the key.
RETURNS (Dict[str, float]): The updated losses dictionary.
"""
if losses is None:
losses = {}
losses.setdefault(self.name, 0.0)
predicted = [eg.predicted for eg in examples]
set_dropout_rate(self.model, drop)
scores, backprop_scores = self.model.begin_update(predicted)
loss, d_scores = self.get_loss(examples, scores)
backprop_scores(d_scores)
if sgd is not None:
self.finish_update(sgd)
losses[self.name] += loss
return losses
def get_loss(self, examples, scores) -> Tuple[float, Floats2d]:
"""Find the loss and gradient of loss for the batch of documents and
their predicted scores.
examples (Iterable[Examples]): The batch of examples.
scores: Scores representing the model's predictions.
RETURNS (Tuple[float, float]): The loss and the gradient.
"""
reference_truths = self._get_aligned_truth_scores(examples)
d_scores = scores - self.model.ops.asarray2f(reference_truths)
loss = float((d_scores**2).sum())
return loss, d_scores
def _get_aligned_truth_scores(self, examples) -> List[Tuple[int, int]]:
"""Align scores of the predictions to the references for calculating the loss"""
# TODO: handle misaligned (None) alignments
# TODO: handle cases with differing whitespace in texts
reference_truths = []
for eg in examples:
start_indices = set()
end_indices = set()
if self.training_key in eg.reference.spans:
for span in eg.reference.spans[self.training_key]:
start_indices.add(eg.reference[span.start].idx)
end_indices.add(
eg.reference[span.end - 1].idx + len(eg.reference[span.end - 1])
)
for token in eg.predicted:
reference_truths.append(
(
1 if token.idx in start_indices else 0,
1 if token.idx + len(token) in end_indices else 0,
)
)
return reference_truths
def _get_reference(self, docs) -> List[Tuple[int, int]]:
"""Create a reference list of token probabilities"""
reference_probabilities = []
for doc in docs:
start_indices = set()
end_indices = set()
if self.training_key in doc.spans:
for span in doc.spans[self.training_key]:
start_indices.add(span.start)
end_indices.add(span.end - 1)
for token in doc:
reference_probabilities.append(
(
1 if token.i in start_indices else 0,
1 if token.i in end_indices else 0,
)
)
return reference_probabilities
def initialize(
self,
get_examples: Callable[[], Iterable[Example]],
*,
nlp: Optional[Language] = None,
) -> None:
"""Initialize the pipe for training, using a representative set
of data examples.
get_examples (Callable[[], Iterable[Example]]): Function that
returns a representative sample of gold-standard Example objects.
nlp (Optional[Language]): The current nlp object the component is part of.
"""
subbatch: List[Example] = []
for eg in get_examples():
if len(subbatch) < 10:
subbatch.append(eg)
if subbatch:
docs = [eg.reference for eg in subbatch]
Y = self.model.ops.asarray2f(self._get_reference(docs))
self.model.initialize(X=docs, Y=Y)
else:
self.model.initialize()
@registry.misc("spacy.span_finder_suggester.v1")
def build_span_finder_suggester(candidates_key: str) -> Suggester:
"""Suggest every candidate predicted by the SpanFinder"""
def span_finder_suggester(
docs: Iterable[Doc], *, ops: Optional[Ops] = None
) -> Ragged:
if ops is None:
ops = get_current_ops()
spans = []
lengths = []
for doc in docs:
length = 0
if doc.spans[candidates_key]:
for span in doc.spans[candidates_key]:
spans.append([span.start, span.end])
length += 1
lengths.append(length)
lengths_array = cast(Ints1d, ops.asarray(lengths, dtype="i"))
if len(spans) > 0:
output = Ragged(ops.asarray(spans, dtype="i"), lengths_array)
else:
output = Ragged(ops.xp.zeros((0, 0), dtype="i"), lengths_array)
return output
return span_finder_suggester